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A Calculus for Esterel
If can, can. If no can, no can.
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The language Esterel has found success in many safety-critical applications, such as !y-by-wire systems and
nuclear power plant control software. Its imperative style is natural to programmers building such systems
and its precise semantics makes it work well for reasoning about programs.

Existing semantics of Esterel generally fall into two categories: translation to Boolean circuits, or operational
semantics that give a procedure for running a whole program. In contrast, equational theories enable reasoning
about program behavior via equational rewrites at the source level. Such theories form the basis for proofs of
transformations inside compilers or for program refactorings, and de"ning program evaluation syntactically.

This paper presents the "rst such equational calculus for Esterel. It also illustrates the calculusÕs usefulness
with a series of example equivalences and discuss how it enabled us to "nd bugs in Esterel implementations.
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1 INTRODUCTION

The language Esterel has found success in many safety-critical applications. It has been used in the
creation and veri"cation of the maintenance and test computer, landing gear control computer,
and virtual display systems of civilian and military aircraft at Dassault Aviation (Berry et al. 2000);
the control software of the N4 nuclear power plants; the Airbus A320 !y-by-wire system; and the
speci"cation of part of Texas InstrumentÕs digital signal processors (Benveniste et al. 2002).

This success with real time and embedded systems in domains that need strong guarantees
can be partially attributed to its computational model. Esterel treats computation as a series of
deterministic reactions to external stimuli. All parts of a reaction complete in a single, discrete time
step, called aninstant. Furthermore, in this synchronous reactive paradigm (Benveniste and Berry
1991; Benveniste et al. 2002), each instant is isolated from interference by the outside environment
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once the reaction begins. In addition, instants exhibit deterministic concurrency; each reaction may
contain concurrent threads without execution order a$ecting the result of the computation.

This combination of synchronous reactions with deterministic concurrency makes formulating
the semantics a challenging problem. Existing semantics tend to take two forms. The "rst, and
most widely used, are semantics that give meaning to programs through a translation to circuits.
These semantics are excellent for compilation and optimization. However they are not ideal for
programmers, who would rather reason in terms of the source program, not its compiled form.

The second form are operational semantics that eschew term rewriting in favor of decorating
terms with various !avors of code pointers and state annotations to track execution. These semantics
are easier for programmers to reason with but give meaning only to whole programs. They do not
lend themselves to compositional reasoning about program fragments, which programmers need.

To obtain the best of both of these approaches, we build onPlotkin (1975) andFelleisen and
Hieb (1992)Õs work on equational theories of programming languages. These theories model
languages with a set of axioms that specify when source-level terms are equivalent. As a result,
they provide a single framework for both reasoning about how a program will run (e.g. reduce to
an answer) using only the source text of the program, and for justifying program transformations
in host of applications: compiler transformations, refactorings, program derivations, etc.

This paper reports on the "rst equational theory of Kernel Esterel (Berry 2002). Developing
such a theory is tricky because of the highly non-local nature of evaluation in Esterel. To maintain
determinism and synchrony, evaluation in one thread of execution may a$ect code arbitrarily
far away away in the program, even if that evaluation does not directly modify shared state. For
instance, the selection of a particular branch of execution in one thread may immediately unblock
a di$erent thread of execution. The selection of the other branch may render the entire program
invalid. These non-local execution and correctness issues are at the heart of EsterelÕs notions of
Logical Correctnessand Constructiveness, and have informed the choice of techniques used for
previous semantics. The circuit semantics match both notions well because they are intimately tied
to whether or not a given cyclic circuit settles. The operational semantics handle these properties by
performing full program passes on each evaluation step to both propagate execution information to
the entire program, and determine which locations in the program are safe to evaluate. A calculus,
however, cannot use either of those techniques. To this end our calculus borrows fromFelleisen
and Hieb(1992)Õs equational theory of state andPotop-Butucaru(2002)Õs Constructive Operational
Semantics to give the "rst calculus for Esterel.

The remainder of this paper consists of seven sections. Section2 provides an introduction to
Esterel and to the speci"c syntax we use for Kernel Esterel. Section3explains the semantics and our
central results, which have all been checked in Agda. With the semantics de"ned, the paper moves
on to discuss implications of speci"c aspects of our semantics. Section4 discusses constructiveness
and how it interacts with our semantics. Section5 gives some example equivalences that our
calculus supports and discusses others that it does not. Our semantics is executable and section6
discusses how we test that our semantics is faithful to preexisting semantics and implementations.
In short, we designed and implemented an executable version of our semantics and used it to "nd
bugs in Esterel implementations. We also automatically typeset the "gures in the paper from the
semantics and use it to test all of the examples in the paper. Section7discusses a standard reduction
that we designed to aid in testing but have not proven, and we conclude with a discussion of related
work in section8.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 61. Publication date: January 2019.



A Calculus for Esterel 61:3

p, q ::= (signal  S p) | (seq p q) | (emit  S) | (present  S p q) | (par p q)
 | nothing  | pause | (loop p) | (suspend p S) | (trap  p) | (exit  n)
 | (shared s := e p) | (+= s e) | (var  x := e p) | (:= x e) | (if  x p q)

S �� signal variables
s �� shared variables

x �� sequential variables
e �� host expressions

Fig. 1. Esterel Syntax

2 A SENSE OF ESTEREL

This section provides some background on Esterel both to introduce the language to those not
familiar with it and to orient Esterel experts with the particular notation we have chosen for Kernel
Esterel. Figure1 shows the syntax we use for our Esterel calculus.

Evaluation of an Esterel program is unlike conventional programming languages in that it
proceeds in a series ofinstants. Each instant happens in, essentially, no time and appears atomic
from the outside. An instant is triggered by a change in the state of the outside world. The external
state changes of the world are communicated to Esterel viasignals. Within each instant, each signal
can either be present (set), absent (not set), or in an indeterminate state, where it is not yet known
if it will be present or absent. Once a signalÕs value becomes known in a speci"c instant, it cannot
change. Accordingly, the outside world may, in between instants, set a signal to present or it may
not, indicating that its value is as yet undetermined (as the program itself may set it).1 Once the
instant begins these signal values cannot be modi"ed by outside world, preventing interference
with the computation. Once an instant completes, the Esterel program will have decided the value of
all of its signals. The outside world can then observe these values, and respond by setting di$erent
signals for the next instant. The value of signals does not carry over between instants.

Esterel is typically used as an embedded language, where the outside world is some other program-
ming language,e.g., C for reactive, real-time systems (Potop-Butucaru et al. 2007), Bigloo (Serrano
and Weis 1995) and JavaScript for GUIs (Berry et al. 2011), or Racket (Flatt and PLT 2010) for medical
prescriptions (Florence et al. 2015). The external language controls when instants take place and
sets up the signal environment for each instant. From the perspective of the host language, the
atomicity of instants gives Esterel a notion of discrete, logical time. Each instant represents one
tick of the clock, and the host language controls the Òclock speedÓ by explicitly starting instants.

2.1 Conditioning on Signals: present

(signal  SL
(seq (emit  SL)

(present  SL
(emit  SO1)
(emit  SO2))))

Fig. 2: A First Example

Esterel programs can also have local signals that they use
to communicate internally. Let us consider a few example
programs that use internal signals to get a sense of how
Esterel programs evaluate. Figure2 shows a "rst example.

This program has two external signals,SO1andSO2,2

through which it will communicate its output. Thesignal
form is a binding form that introduces a local signal (here
namedSL) available in its body. Signals that are free in the
entire program are the ones that support communication with the host language, external to Esterel.
At the beginning of the instant the values ofSL, SO1, andSO2are not known.

1For those familiar with Esterel: free signals in programs in our calculus correspond to input-output signals in Esterel.
2We pre"x all signal names with anS.
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Theseq form is sequential composition, so this program "rstemitsSL, which means the signal
SLis known to be present for this entire instant. Next, the program evaluates a signal conditional,
written using thepresent keyword in Esterel. When a signal is known to be present, apresent
form is equivalent to its "rst sub-expression, in this case(emit  SO1). So this programemitsSO1
and then terminates, ending the instant withSO1 present and withSO2absent.

(signal  SL
(par (emit  SL)

(present  SL
(emit  SO1)
(emit  SO2))))

Fig. 3: This time with par

Esterel also supports a deterministic form of parallelism
and indeed if we replace the sequential composition in "g-
ure 2 with parallel composition, as shown in "gure3, the
program is guaranteed to behave identically. Speci"cally,
the present form in the second arm of thepar (concep-
tually) blocks until the signalSLis emitted or we learn it
cannot be emitted in this instant. So the "rst arm of the
par is the only part of the program that can progress, and once it performs the(emit  SL), that
unblockspresent form, enabling(emit  SO1) to happen.

(signal  SL
(present  SL

(emit  SO1)
(emit  SO2)))

Fig. 4: A signal never emitted

In order for apresent expression to become unblocked
and evaluate the second sub-expression, the Esterel pro-
gram must determine that given signal cannot be emitted
in this instant. One way this can happen is that there are no
occurrences of(emit  SL). So, if we remove the(emit  SL)
from our running example, as shown in "gure4, then the
program will emit the signalSO2.

(signal  SL1
(signal  SL2

(par (present  SL1 (emit  SL2) nothing )
(present  SL2 (emit  SL1) nothing ))))

Fig. 5: Cyclic signal dependencies

The way thatpresent works helps guar-
antee EsterelÕs form of deterministic concur-
rency. Until a particular signalÕs value be-
comes known, the program simply refuses to
make a choice about which branch to run. This
style of conditional raises many interesting
questions about how apparent cyclic references interact with each other, however. For example,
what should the program in "gure5 do? (nothing is the Esterel equivalent ofunit or void in
other languages.) How such programs behave is well-studied in the Esterel community and touches
on the notions of logical correctness and constructiveness, which we return to in section2.4.

2.2 Running for Multiple Instants: pause

(signal  SL
(par (seq pause

(emit  SL))
(present  SL

(emit  SO1)
(emit  SO2))))

Fig. 6: Multiple instants

So far, all of the example programs have terminated in a
single instant but, in general, an Esterel program might
run to some intermediate state and thenpause. When all
of the parallel branches of some program have paused or
terminated, then the instant terminates. During the next
instant, however, evaluation picks up right where it left
o$, with whatever remains of the program.

Thepauseexpression brings the host languageÕs notion
of logical time into Esterel. From the Esterel programmerÕs perspective, every instruction in the
language isinstantaneousÑtaking zero logical timeÑwith the exception ofpause, which takes one
unit of time. This e$ectively stops a thread of execution when it reachespause, until the host
language starts the next time step. At the start of the next instant, one unit of time has passed, so
the pauses will have had enough ÒtimeÓ to complete and the program will resume from that point.
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As an example, consider the program in "gure6. As it starts, the second arm of thepar blocks,
as with the example in "gure3. The "rst arm of thepar "rst evaluatespause, which means that
that arm of thepar has terminated for the instant, and cannot reach the(emit  SL) until the next
instant. Accordingly thepresent takes the else branch, safe in the knowledge that no(emit  SL)
can happen this instant. In the next instant, the program resumes from eachpause it hit the
previous instant. Therefore onlySLis emitted in the second instant.

2.3 Determining That a Signal Cannot be Emi!ed: Can

(signal SL1
(signal SL2

(signal SL3
(par (present SL1

(present SL2
(emit SO1)
(emit SL3))

(present SL2
(emit SO2)
(emit SL3)))

(seq
(emit SL2)
(seq
(present SL3 pause nothing)
(emit SL1)))))))

Fig. 7: Can

Determining whether or not a signal can be
emitted is not simply a matter of eliminat-
ing untaken branches inpresent expressions
that have executed and then checking the
remaining emit expressions. Sometimes, a
present may be blocked on some as-yet inde-
terminate signal, but portions of its branches
are already known to be unreachable because
other signal values are known, enabling us to
declare that some signal is absent.

For example, consider the program in "g-
ure 7. The parÕs "rst sub-expression is a
present and its second is aseq. Thepresent
expression is blocked onSL1. Of course, the
last expression in theseq expression emits
SL1but beware: it is preceded by another
present expression that may or may not
pause. If it does pause, then the(emit  SL1) happens in a future instant (so we take the ÒelseÓ
branch of thepresent on SL1). If it does not pause, then the(emit  SL1) happens in the current
instant (and so we take the ÒthenÓ branch of thepresent on SL1). LetÕs work through how Esterel
evaluates this complex interplay of signals and branches ofpar expressions.

FirstSL2is emitted. Once it is, it is clear which branch the innerpresent expressions will take,
even though they cannot yet run because we do not yet know aboutSL1. In particular, neither
one can take their ÒelseÓ branch and thus none of the(emit SL3) expressions can be evaluated.
Accordingly we can now reduce the(present SL3 pause nothing) to nothing . From there we
can evaluate(emit  SL1), which unblocks thepresent on SL1, whichemits the output signalSO1.

The most important step in this sequence was when Esterel decided thatSL3cannot be emitted.
The decision procedure for determining when a signal cannot be emitted in the current instant is
calledCan. It follows the same reasoning we have here, but accounts for other details of the core
language of Esterel. For example, if the "rst sub-expression of aseqcannot terminate in a given
instant,Can will rule out any emissions in the second sub-expression.

The full de"nition is given in "gures15and16, and is explained in section3.2.

2.4 Ge!ing Stuck: Logical Correctness and Constructivity

The style of instantaneous decision making in Esterel, facilitated viaCan, leads to programs with
no meaning, even though a traditional programming language would given them meaning. Such
programs are calledlogically incorrect.
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Logical correctness can be thought of as a consequence of the instantaneous nature of decision
making in Esterel: if non-pauseexpressions take no logical time, then decisions about the value of
a signal are communicated instantly and that value cannot change. Therefore, the program should
behave as if that value was determined at the start of the instant. Therefore, there should be exactly
one value for each signal. Some programs, however, have zero or multiple possible assignments.
Consider the program in "gure8. No matter the de"nition ofCan, S1 cannot be set to either present
or absent. IfS1 were present, the program would take the "rst branch of the condition, and the
program would terminate without having emittedS1. If S1were set to absent, the program would
chose the second branch and emitting the signal. Both executions lead to a contradiction, therefore
there are no valid assignments of signals in this program. This program is logically incorrect.

(signal  S1
(present  S1 nothing  (emit  S1)))

Fig. 8: No possible value forS1

The opposite is true of the signals in the program in
"gure 9. Here, ifS1is chosen to be present, the conditional
will take the "rst branch andS1will be emitted, justifying
the choice of signal value. However, if the signal is chosen
to be absent, the signal will not be emitted and the choice of absence is also justi"ed. Thus there are
two possible assignments to the signals in this program, and this program is also logically incorrect.

(signal  S1
(present  S1 (emit  S1) nothing ))

Fig. 9: Too many values forS1

A related notion,constructiveness, arises from an order
of execution imposed byseqandpresent . All decisions
in the "rst part of a seqmust be made before decisions in
the second part and the value of a signal being conditioned
on by present must be determined before decisions within either of its branches can be made.
Decisions that may a$ect sibling branches in apar, however, may happen in any order.

To ensure these ordering constraints, Esterel imposes an order on information propagation:
decisions about the presence of a signal can only be used by the portion of the program that is
after (in the sense of the ordering imposed byseqandpresent ) it is emitted. Thus, programs that
are logically correct may still be rejected because there is no order in which to run the program
that will arrive at the single, valid assignment. Such programs are called non-constructive.3 Not all
logically correct programs are constructive, but the converse is true: all constructive programs are
logically correct. Put another way, making a guess about the value of a signal and backtracking if
the guess turns out to be wrong would admit logically correct, but non-constructive, programs.

(signal  S1
(present  S1 (emit  S1) (emit  S1)))

(signal  S1
(seq (present  S1

nothing
nothing )

(emit  S1)))
Fig. 10: Constructiveness examples

Succinctly, a program is constructive if it is logically cor-
rect, and the values of signals can be determined without
any speculation: a signal is present only after it has been
emitted, and a signal is absent only afterCandetermines
it cannot be emitted.

Example non-constructive programs are shown in "g-
ure10. The "rst program has only one possible assignment
for S1, as it is emitted by both branches of the conditional.
Becausepresent requires that the value ofS1be known
before executing a sub-expression, however, there is no
valid order in which to execute the code, and the program is rejected as non-constructive. A similar
phenomena can be seen in the second program in "gure10, but with seq.

The two ordering constraints can interact. In the example in "gure11, the(emit  SL1) is in aseq
that may or may notpause, which prevents us from determining ifSL2is emitted.

Non-constructive programs are handled two di$erent ways by Esterel implementations. Some
approximate constructiveness with a conservative static analysis and reject programs they cannot

3The use of the name ÒconstructiveÓ arises from connections to constructive logic (Mendler et al. 2012).
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prove constructive on all inputs. This is the default behavior ofEsterel v5(Berry 2000). Others treat
non-constructivity as as runtime error, raising an error if, during an instant, the program cannot
determine a value for all signals. This is the behavior of Hiphop.js (Berry et al. 2011), and Esterel v5
when used with the-I !ag.

(signal SL1
(signal SL2

(par (present SL1 (emit SL2) nothing)
(seq (present SL2 pause nothing)

(emit SL1)))))
Fig. 11: Getting stuck

In the circuit semantics for Esterel, a non-
constructive programs is one that, when com-
piled to a circuit, will cause the circuit to
misbehave, never settling because of instan-
taneous cyclic dependencies between inputs
and outputs of some of the gates. That is, a pro-
gram is constructive if and only if its circuit
stabilizes within some "xed delay (Berry 2002; Mendler et al. 2012).

Non-constructive programs usually get stuck in our calculus, but they do not always. The issues
here are subtle and revisited in section4.

2.5 Loops,suspend, Non-local Exits, Variables, and the Host Language

Our calculus also covers the rest of Kernel Esterel. The(trap  p) and(exit  n) forms allow non-
local control. Roughly speaking,(exit n) will abort execution up the then+1th enclosing(trap p),
reducing it tonothing . These can be used for exception handling, but also for non-exceptional
control !ow. For example, it may be simpler to express some repeating task on the assumption it
never terminates and then, in parallel, useexit to abort the task when necessary. Kernel EsterelÕs
trap is a simpli"ed form of EsterelÕs trap where traps are named and exits refer to those names.

Theloop form is an in"nite loop, running its body,p, over and over, but with a constraint that
the loopÕs body can be started at most once in any instant. This means that the body of a loop
must either pause or exit at least once in every iteration, thereby ensuring that instants always
terminate. One subtle rami"cation of this point is that two separate iterations of a loop may run
within a single instant, but only in the situation where we "nish an iteration that was started in a
previous instant and then start a new one in the current instant (which must then pause or exit).
We return to this point in section3.3.

Loops that fail this condition are calledinstantaneousand programs with such loops are not
constructive. In our calculus, we handle this by reducing a loop in such a way that the program
gets stuck if the loop were to be instantaneous.

The suspendform has a subtle semantics. If we are starting asuspend for the "rst time, it
simply runs the body. But, if we are picking up from a previous instant where wepaused in the
body of asuspend, then we test the signal. If it is present, the entiresuspendis paused until the
next instant. If it is not present, evaluation continues within thesuspend, picking up at thepause.

Thesuspendform is used to implement many useful, high-level behaviors. One straight-forward
use is to implement a form of multiplexing, where some portion of the input signals are used
directly by several di$erent sub-pieces of the computation at once, and another portion of the
input determines which of those computation is the desired output. For example, an ALU might,
in parallel, both add and multiply its inputs and store the output in the same place. Thesuspend

form can be used to control whether the addition or multiplication computation happens.
Another use ofsuspend is in task management. As a work!ow is progressing there may be a

task that runs at an interval that varies over time. This repeating task is important, but there may
be an occasional situation where some more important task takes precedence.suspend can be
used to pause the subcomputation corresponding to the repeating task, and resume it later without
losing its current state.
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And "nally, Esterel has two forms of variables: sequential variables (x) and shared variables
(lowercases). Both of these variables refer to values and expressions in a host language, into which
Esterel is embedded. For example, inEsterel v5(Berry 2000) the host language is a subset of C,
whereas in Hiphop.js (Berry et al. 2011) the host language is JavaScript.

Sequential variables are conventional mutable variables. To ensure deterministic concurrency,
they may be used only sequentially (any given variable may not appear free in both branches of
any speci"cpar expression).

Shared variables, on the other hand, may be modi"ed or looked at in multiple branches of apar
expression. However, restrictions apply to ensure that the order of modi"cations is not observable.
In particular, the programÕs execution cannot be in!uenced by the value of the variable until after
all modi"cations have been performed (in a manner reminiscent of, but simpler than,Kuper and
Newton(2013)Õs LVars).

Shared variables start each instant with their old values, carried over from the previous instant.
Multiple writes to a shared variable within an instant are collected with an associative and commu-
tative operation, which throws away the value from the previous instant. After all possible writes
are collected, the shared variableÕs value is available. Tracking if a shared variable is writable uses
the same mechanism as tracking whether or not a signal is set, and shared variables are subject to
the same logical correctness and constructiveness constraints as signals.

For simplicity, our calculus restricts shared and sequential variables to be natural numbers. Shared
variables use+ as the only combining operation. Sequential variables also support a conventional
conditional expression,if, that tests if the value is0 or not.

For a fuller explanation of these features and how they behave, start withPotop-Butucaru et
al. (2007)Õs bookCompiling Esterel, especially the "rst two chapers. The semantic rules in "gure14
also provide more details on how these constructs work.

3 THE ESTEREL CALCULUS

The core of our calculus is a reduction relation on program expressions that corresponds to a
single-step of computation within one instant. This relation captures a notion of simpli"cation,
where each computational step brings us closer to a "nal answer. Thus, the reduction induces
an evaluator for the language. Furthermore, the re!exive, symmetric, and transitive closure of
the relation together with its closure over arbitrary contexts gives rise to an equivalence relation
between programs terms, which is our calculus.

The remainder of this section explores the de"nitions that comprise the calculus, speci"cally the
de"nitions shown in "gure 12. Section3.1shows the basic notion of reduction that our calculus
supports and section3.2describes our ourCanfunction. The judgment form�� CB captures how
signals are to be used in Esterel programs, and is described in section3.3. Finally section3.4gives
the de"nitions ofEval and�� , and the central result of this work, namely thatEval is a function.

Before diving into the rules, however, we need a to extend thep non-terminal to track information
about the term as it reduces. Figure13shows the two extensions. First, the(loop p q) expression
form is similar to a(seq p (loop q))and is used by the loop reduction rule (discussed in section3.1).

The other extension is the(� �. p) expression form. It pairs an environment (�) with an Esterel
expression. The environment records what we have learned about the signals and variables in
this instant for the contained subexpression, and various rules either add information to the� or
exploit information recorded as the program reduces. We keep the environments local to speci"c
expressions in order to facilitate local reasoning.
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p � q
Our notion of reduction; the primitive
computational steps of our calculus

Can : p � � { S: (Setof S), K: (Setof �), sh: (Setof s) }
Determines the signals an expression can emit

�CB  p
A well-formedness condition on programs
ensuring that signals and variables are
well-behaved

p �e  q
Te re �exive, transitive, symmetric,
context closure of  ��

Eval!"!p!�!�!#$%&'(!S)
Runs the program for a single instant
and returns the emi�ed signals

��  : complete � p
Prepares a fully-reduced program for
the next instant

Fig. 12. An overview of the main definitions

p, q ::= ....
 | (� �. p)
 | (loop p q)

status ::= present
 | absent
 | unknown

shared-status ::= ready | old  | new
complete ::= done | (� �c. done)

done ::= stopped | paused
stopped ::= nothing  | (exit  n)
paused ::= pause

 | (seq paused q)
 | (loop paused q)
 | (par paused paused)
 | (suspend paused S)
 | (trap  paused)

E ::= (seq E q)
 | (loop E q)
 | (par E q)
 | (par p E)
 | (suspend E S)
 | (trap  E)
 | []

Metafunctions:

�p  : stopped � stopped
�p nothing  = nothing
�p (exit  0)  = nothing
�p (exit  n)  = (exit  n-1)

Empty Environment : {}

Singleton Environments : { Ç var È � Ç val È }
{ S � status }
{ s � �n , shared-status� }
{ x � n }

Environment Composition : � � �
(�1 � �2)(S) = �2(S) if S � dom(�2)
(�1 � �2)(S) = �1(S) if S 	 dom(�2)

 dito for s and x

Complete Environments : �c

A comple�e environmen� is one
where no signals are unknown
 and all shared variables are ready

Resetting Environments : ���c��
Reseting a comple�e environmen�
upda�es all signals �o unknown
and all shared variables �o old

Restricting the Domain : (� \ {S})
Res�ric�ing �he domain of an
environmen� removes �he
binding for S

Embedded host language expressions
e: hos� expressions
FV(e): all x and s �ha� appear free in e
!"#$�e , �
: evalua�ion; produces n

Fig. 13. Supplemental Structures
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si
gn

al
s

(signal  S p) � (� { S � unknown }. p) [signal ]

(� ��. E[(emit  S)]) � (� (�� � { S � present  }). E[nothing ])
 where ��(S) � { present  , unknown }

[emit ]

(� ��. p) � (� (�� � { S � absent }). p)
 where S � dom(��), S � Can���(� ��. p), {}�.S, ��(S) = unknown

[absence]

(� ��. E[(present  S p q)]) � (� ��. E[p])  where ��(S) = present [is-present ]

(� ��. E[(present  S p q)]) � (� ��. E[q])  where ��(S) = absent [is-absent]

sh
ar

ed
 v

ar
ia

bl
es

(� ��. E[(shared s := e p)]) � (� ��. E[(� { s � 	n , old 
 }. p)])
 where FV(e) � dom(��), � s � FV(e). ��(s) = 	_ , ready
, n = Eval �e , ���

[shared]

(� ��. E[(+= s e)]) � (� (�� � { s � 	Eval �e , ��� , new
 }). E[nothing ])
 where ��(s) = 	_ , old 
, FV(e) � dom(��), � s � FV(e). ��(s) = 	_ , ready


[set-old]

(� ��. E[(+= s e)]) � (� (�� � { s � 	n + Eval �e , ��� , new
 }). E[nothing ])
 where ��(s) = 	n , new
, FV(e) � dom(��), � s � FV(e). ��(s) = 	_ , ready


[set-new]

(� ��. p) � (� (�� � { s � 	n , ready
 }). p)
 where s � dom(��), s � Can���(� ��. p), {}�.sh, ��(s) = 	n , shared-status
, 

shared-status � { old  , new }

[readyness]

se
qu

en
tia

l v
ar

ia
bl

es (� ��. E[(var  x := e p)]) � (� ��. E[(� { x � Eval �e , ��� }. p)])
 where FV(e) � dom(��), � s � FV(e). ��(s) = 	_ , ready


[var]

(� ��. E[(:= x e)]) � (� (�� � { x � Eval �e , ��� }). E[nothing ])
 where x � dom(��), FV(e) � dom(��), � s � FV(e). ��(s) = 	_ , ready


[set-var]

(� ��. E[(if  x p q)]) � (� ��. E[p])  where x � dom(��), ��(x) 
 0 [if-true ]

(� ��. E[(if  x p q)]) � (� ��. E[q])  where ��(x) = 0 [if-false ]

�� (� ��1. E[(� ��2. p)]) � (� (��1 � ��2). E[p]) [merge]

se
q (seq nothing  q) � q [seq-done]

(seq (exit  n) q) � (exit  n) [seq-exit]

tr
ap (trap  stopped) � �p stopped [trap ]

pa
r

(par nothing  done) � done [par-nothing ]

(par (exit  n) paused) � (exit  n) [par-1exit ]

(par (exit  n1) (exit  n2)) � (exit  max(n1 , n2)) [par-2exit ]

(par p q) � (par q p) [par-swap]

(suspend stopped S) � stopped [suspend]

lo
op

(loop p) � (loop p p) [loop]

(loop (exit  n) q) � (exit  n) [loop^stop-exit ]

Fig. 14. Reduction Rules
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3.1 Reduction Rules

The rules given in "gure14govern how computation takes place within a single instant.
The "rst rule, [signal], reduces asignal expression to a�� expression by introducing a singleton

�� that binds the signal tounknown.
Once a signal has an entry in a relevant��, the [emit ] rule records that a signal is present (using

the composition operator�� from "gure 13) and eliminates theemit expression. The side-condition
ensures that the environment�� does not already indicate that the signal is absent.

In order for anemit to "re, it must be in the body of a�� in only a speci"c set of positions, as
captured by theE contexts, shown in "gure13. They include the "rst sub-expression of aseq
expression, the "rst sub-expression of a(loop p q) expression, either branch of apar, the body of
asuspendor a trap . Notably this rule does not allow an expression like(�� ��. (seq p (emit  S))) to
reduce itsemit expression because thep could bepause, delaying the(emit S) to the next instant.
More generally, the expressions captured byE are guaranteed to happen in the current instant.

As we saw in section2.3, Candetermines if a signal cannot be emitted. The rule[absence] uses
Can�� (a variation ofCanthat is explained in section3.2) to determine that a signal cannot be emitted
and records that information in a�� expression, if that information is not yet recorded.

Once the status of a signal is recorded as either present or absent, the[is-present] and[is-absent]
rules can reducepresent expressions.

The rules[shared], [set-old], [set-new], and[readyness] handle shared variables in a manner
similar to how the previous set of rules handle signals. The[shared] rule introduces a new en-
vironment that binds the shared variable using thee in the shared expression to determine the
default value of the variable using the host languageÕs evaluation function. The rules[set-old]
and[set-new] modify a shared variable depending on whether it has been modi"ed in the current
instant or not. If the status of a shared variable in the environment isold , it is being modi"ed for
the "rst time in the current instant and the rule[set-old] replaces the old value in the environment
with the new value. If the status of a shared variable isnew, it has already been modi"ed in the
current instant and the rule[set-new] adds the current value and the new value in the+=expression
and stores the result in the environment. One subtlety of note here: the[shared] rule creates an
environment which marks the shared variable asold, not new. This is because the value initially
given to a shared variable represents its default value rather than its initial value, and so acts as if
this value was set in the previous instant. Finally, the[readyness] rule makes a variable change
from writable to readable. This occurs ifCan��Õs result does not contain the shared variables, which
means it will not be modi"ed in this instant and thus we can update the environment to mark
the variable asready. Furthermore, the side-conditions on the[shared], [set-new], and[set-old]
rules (as well as the corresponding rules for sequential variables) ensure that these rules can "re
only if, for every shared variable used in the host language expression, that variable safe to be read,
e.g. is marked asready in �.

The rules[var], [set-var], [if-true], and[if-false ] cover sequential variables. Unlike the rules
for signals or shared variables, these rules do not refer toCan. These variables are not allowed to
be free in two di$erent arms of anypar expression, so they can be freely read and written.

The "nal rule that handles� expressions is[merge]. It combines two environments, lifting an
inner environment out to an outer one and composing them into a single environment.

There are two rules for sequential composition. If the "rst sub-expression isnothing, then
we replace the entire expression with the second branch. If the "rst sub-expression is anexit
expression, however, then the entire sequence exits, discarding the second part of theseqexpression.
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The next rule handlestrap . Once the body of atrap has "nished evaluating, it will either be an
exit expression ornothing , which the��p ("gure 13) function handles.

Thepar rules are a little more interesting. The "rst three refer to to the de"nitions ofstopped
anddone in "gure 13and handle the situations when both branches are "nished for the instant.
If one side has reduced to nothing, the[par-nothing ] rule reduces to the other one. If one side
hasexit ed and the other ispaused, the [par-1exit ] rule preempts the other branch of the par
by bubbling theexit up. If both sides haveexit ed the[par-2exit ] rule reduces the expression
to whicheverexit will reach the farthest uptrap . The[par-swap] rule switches the branches,
allowing [par-nothing ] and[par-1exit ] to match regardless of which branch isexit or nothing .

The[suspend] rule reduces to its body when its body has eitherexit ed or reduced tonothing .
This leaves us with one last pair of rules:[loop] and[loop^stop-exit ]. Intuitively, we would like

an expression like(loop p) to reduce simply to just(seq p (loop  p)), duplicating the bodyp into
a seqexpression which becomes the current iteration of the loop.

Such a rule could give rise to in"nite loops within a single instant, however, which is forbidden in
Esterel. We capture this constraint in our calculus with theloop expression form. It is introduced
only by the reduction rule forloop, and is meant to capture a single unrolling of the loop; the "rst
sub-expression is the part of the loop that runs in the current instant and the second sub-expression
is the body of the loop, saved to be used in the next instant. There is no rule that eliminates aloop
when the "rst sub-expression isnothing (unlike seq, which has the[seq-done] rule). As such,
programs get stuck when they contain instantaneous loops.

One thing to note about these rules: with the exception of[par-swap], they are strongly normal-
izing. The proof is given asnoetherian in Agda code in the supplementary material.

3.2 The Can Function

This section describes the functionCan, a conservative analysis of the state of an Esterel program
that determines its behavior. Our de"nition is inspired byBerry (2002)Õs de"nition, generalized
to support�� expressions and modi"ed to handle a reduction semantics rather than one based on
annotating the program with program counters.

This function computes a conservative approximation to the behavior of some given Esterel
expression with respect to some knowledge about signals and shared variables that is encapsulated
in an environment,��. In particular, it computes a set of signals (S), a set of exit codes (�� ), and a set
of shared variables (s). Any Sthat is not in the result is guaranteed not to be emitted in the current
instant (although if someSis in the result, it may or may not be emitted in the current instant).
The same holds for any shared variable in the result: if ans is not the result, then it is guaranteed
that s cannot be updated again in the current instant. If thes is in the result, then it may or may
not be written to. The exit codes capture whether or not the given expression pauses, reduces to
nothing, or exits. If the expression may reduce tonothing , then the codenothin will be in the
result. If the expression may pause, then the codepaus will be in the result. If the expression may
exit with the coden, then the coden will be in the result. Thus, if any of those speci"c codes are
not in the result, then we know the expression does not have the corresponding behavior.

The notation we use for the records in the de"nition ofCan is similar to many record notations,
but we use the precise one inPierce(2002)Õs bookTypes and Programming Languages. We write
CanÕs result as a record with three "elds, where curly braces construct records, e.g., theemit case
of Canreturns a record with a singleton set of signals (containingS), a singleton set of exit codes
(containingnothin ) and the empty set of shared variables. Selecting a "eld from a record uses dot
notation. For example,Can��p, ����.Sselects the ÒSÓ "eld from a call toCan.
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��  ::= nothin  | paus | n

Can : p �� ��  { S: (Setof S), K: (Setof �� ), sh: (Setof s) }
Can��(�� ��1. p), ��2��  = { S = Can����(�� ��1. p), ��2��.S \ dom(��1),

K = Can����(�� ��1. p), ��2��.K,
sh = Can����(�� ��1. p), ��2��.sh \ dom(��1) }

Can��nothing , ����  = { S = �� , K = { nothin  }, sh = ��  }
Can��pause, ����  = { S = �� , K = { paus }, sh = ��  }
Can��(exit  n), ����  = { S = �� , K = { n }, sh = ��  }
Can��(emit  S), ����  = { S = { S }, K = { nothin  }, sh = ��  }
Can��(present  S p q), ����  = Can��p, ����
 where ��(S) = present
Can��(present  S p q), ����  = Can��q, ����
 where ��(S) = absent
Can��(present  S p q), ����  = { S = Can��p, ����.S �� Can��q, ����.S,

K = Can��p, ����.K �� Can��q, ����.K,
sh = Can��p, ����.sh �� Can��q, ����.sh }

Can��(suspend p S), ����  = Can��p, ����
Can��(seq p q), ����  = Can��p, ����
 where nothin  �� Can��p, ����.K
Can��(seq p q), ����  = { S = Can��p, ����.S �� Can��q, ����.S,

K = Can��p, ����.K \ { nothin  } �� Can��q, ����.K,
sh = Can��p, ����.sh �� Can��q, ����.sh }

Can��(loop p), ����  = Can��p, ����
Can��(loop p q), ����  = Can��p, ����
Can��(par p q), ����  = { S = Can��p, ����.S �� Can��q, ����.S,

K = { max(�� 1 , �� 2) | �� 1 �� Can��p, ����.K , �� 2 �� Can��q, ����.K },
sh = Can��p, ����.sh �� Can��q, ����.sh }

Can��(trap  p), ����  = { S = Can��p, ����.S, K = { �	�  x | x �� Can��p, ����.K }, sh = Can��p, ����.sh }
Can��(signal  S p), ����  = { S = Can��p, �� �
  { S ��  absent }��.S \ { S },

K = Can��p, �� �
  { S ��  absent }��.K,
sh = Can��p, �� �
  { S ��  absent }��.sh }

 where S �� Can��p, �� �
  { S ��  unknown }��.S
Can��(signal  S p), ����  = { S = Can��p, ��2��.S \ { S }, K = Can��p, ��2��.K, sh = Can��p, ��2��.sh }
 where ��2 = �� �
  { S ��  unknown }
Can��(shared s := e p), ���� = { S = Can��p, ����.S, K = Can��p, ����.K, sh = Can��p, ����.sh \ { s } }
Can��(+= s e), ����  = { S = �� , K = { nothin  }, sh = { s } }
Can��(var  x := e p), ����  = Can��p, ����
Can��(:= x e), ����  = { S = �� , K = { nothin  }, sh = ��  }
Can��(if  x p q), ����  = { S = Can��p, ����.S �� Can��q, ����.S,

K = Can��p, ����.K �� Can��q, ����.K,
sh = Can��p, ����.sh �� Can��q, ����.sh }

�	�  : ��  ��  ��
�	� nothin  = nothin
�	� paus  = paus
�	� 0  = nothin
�	� n  = n-1
if n > 0

max : ��  ��  ��  ��
max(�� 1 , �� 2) computes
the maximum of �� 1 and
�� 2 where we de��ne 
nothin  < paus < 0 < 1 < �


Fig. 15. CanFunction
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Can�� : (�� ��. p) �� ��  { S: (Setof S), K: (Setof �� ), sh: (Setof s) }
Can����(�� ��. p), ��2��  = Can����(�� (�� \ {S}). p), ��2 ��  { S ��  absent }��
 where S �� dom(��), 

��(S) = unknown, 
S �� Can����(�� (�� \ {S}). p), ��2 ��  { S ��  unknown }��.S

Can����(�� ��. p), ��2��  = Can����(�� (�� \ {S}). p), ��2 ��  { S ��  ��(S) }��
 where S �� dom(��)
Can����(�� ��1. p), ��2�� = Can��p, ��2��

Fig. 16. TheCanFunction for�� Expressions (cases are checked in order)

The three results fromCaninteract with each other in order to determine the overall result.
Consider the twoseq cases. In the "rst one, the side-condition says thatnothin is not in the
K "eld for the "rst sub-expression of theseq, p. Accordingly, we know thatp does not reduce
to nothing , thus it must either exit or pause. Since it exits or pauses, we know that none of the
behavior ofq is relevant as it will not be evaluated in this instant and so the result ofCanfor the
entire seqexpression is just its result for thep expression. This means that

Can��(seq pause (emit  S)), ����.S

is the empty set, since theemit must happen in the next instant.
In the secondseqcase, we know thatnothin is a possible result code, and thusp might reduce

to nothing so we have to combine the result of thep andq recursive calls. Mostly this amounts to
taking the union, but note that theK case removesnothin from the codes in the result ofp before
performing the union. This removal accounts for the fact that, even ifp reduces tonothing , q
must also reduce tonothing for the seqexpression to reduce tonothing . For example,

Can��(seq nothing  pause), ����.K

correctly contains only the exit codepaus.
Theloop expression form, in contrast, always ignores the second sub-expression, because we

know that the second sub-expression can a$ect only future instants.
Various other cases in the de"nition ofCanre!ect the semantics of the di$erent constructs in

similar ways. The cases handlingpresent consult the given�� to see if the status of the signal is
known and look only at the corresponding branch of thepresent expression if so. The rule for
par takes into account the same behavior that the fourpar rules in the reduction relation do when
computing the codes for the entire expression out of the codes of the subexpressions. Thetrap case
uses the metafunction�� to adjust the exit codes in a manner that mimics howtrap expressions
reduce. Since theshared form introduces a new variable, its case inCanremoves that variable
from the results, as it is lexically scoped. In each of these cases,Canignores thee expressions, as it
does not reason about the behavior of the host language.

This leaves thesignal and�� cases. Consider howCan handlessignal expressions. The second
signal case is the more straightforward one. It says that the result for the entiresignal form is
the same as the result for the body of asignal form when it is analyzed with no knowledge about
the signal. But there would be a problem with theCanfunction if that were the only case.

To motivate the "rstsignal case inCan, consider this call:

Can��(signal  S2 (present  S2  (emit  S1) nothing )), {}��.S
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If we took the secondsignal case inCan, then this would return a set containingS1. It actually
returns the empty set. The "rstsignal case callsCanwith S2 set tounknownand checks to see ifS2
is not present in the ÒSÓ portion of the result. It is not (because there are no(emit  S2) expressions),
soCanthen setsS2to absent and reprocesses its body. This time, becauseS2is known to be
absent, Canconsiders only the last sub-expression of thepresent , thereby ignoring the(emit  S1)
and returning the empty set of signals.

In isolation, analyzing the body twice seems like overkill, especially because it triggers exponen-
tial behavior in the number of nestedsignal forms.4 But consider this call toCan:

Can��(signal  S1
(seq (present  S1 pause nothing )

(signal  S2 (present  S2
(emit  S1)
nothing )))), {}��.S

This example input is a bit complex, but "rst notice that the innersignal expression is the same
as the previous example (and there are no other(emit  S1) expressions), so we know thatS1is
not going to be emitted. IfCandid not have that "rstsignal case, then it could not learn thatS1
cannot be emitted and thus we would not be able to use the[absence] rule on this expression, and
the program would remain stuck, unable to reduce the "rstpresent .

Finally, for the� case, theCanfunction dispatches toCan�� ("gure 16). TheCan� function looks
complex, but it is essentially the same as the twosignal cases. It is broken out into its own function
because�� binds multiple signals at once; soCan�� recurs though the structure of the environment,
considering each of the signals that are bound. The "rst case ofCan� corresponds to the "rstsignal
case inCan; the second case inCan� corresponds to the secondsignal case, and the last case
in Can�� corresponds to the situation where there are no more signals bound in� (and��1 can be
dropped as it contains only information abouts andx variables, whichCandoes not need).

3.3 Reincarnation, Schizophrenia, and Correct Binding

Thesignal form seems to be something close to a variable binding form, familiar from conventional
! -calculus based programming languages. It is, however, not the same and a signi"cant source of
subtlety in Esterel. The Esterel community has explored these issues in great detail and in this
section, we try to bring across the basic points and then explain how our calculus handles them.

(loop
(signal  SZ

(seq pause
(emit  SZ))))

Fig. 17: A Schizophrenic Loop

The two central issues are the phenomena of
schizophrenic and reincarnated signals. To understand
them, "rst recall the central tenant of Esterel signals: every
signal must have exactly one value in a given instant. Now,
consider the example program in "gure17. During the "rst
instant of execution the signalSZwill be absent, as the
program pauses before emitting it. In the next instant we pick up where we left o$. The "rst thing
that happens is that we emitSZ. Then the loop body restarts. Because we have re-entered the loop
body and encountered thesignal expression afresh, theSZ should now be absent. But this means
that the signalSZhas two di$erent values in a single instant!

In the literature, signals which are duplicated by a loop body in within one instant are called
reincarnated. If a reincarnated signal obtains di$erent values in each of its incarnations, it is called
schizophrenic. Schizophrenic signals, however, merely appear to violate the single-value-per-instant

4This exponential behavior a$ected the testing of our semantics against existing Esterel semantics and implementations;
see section6 and section7 for more.
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rule. Because instantaneous loops are banned, the number of times a loop body can be entered is
bounded. This means that the number of reincarnations of any signal is also bounded. Therefore
we consider each incarnation to, in fact, be a separate signal, removing the apparent violation.

This resolution shows up directly in Esterel compilers and circuit semantics. Naive treatment of
schizophrenic signals can cause unstable loops in the corresponding circuit, breaking the guarantee
that all constructive programs translate to stable circuits. Therefore, many Esterel compilers
duplicate parts of loop bodies with schizophrenic signals to remove the apparent violation of the
single-value-per-instant rule, avoiding cross-loop cycles (Berry 2002; Potop-Butucaru et al. 2007;
Schneider and Wenz 2001). In short, each incarnation of a signal gets a separate wire.

Esterel semantics such as the Constructive Operational Semantics (Potop-Butucaru 2002) and the
Constructive Behavioral Semantics (Berry 2002) take a di$erent approach, handling such signals by
carefully arranging to ÒforgetÓ a schizophrenic signalÕs "rst value when the second one is needed.

Our semantics takes an approach inspired by the circuit perspective, meaning we do not treat
signals in a conventional way. More precisely, we do not assume the variable convention (Barendregt
1984), nor do we include an" rule. Indeed, we think of signals as if they name wires.

This perspective means that schizophrenic and reincarnated signals are, at "rst glance, handled
very simply. We just duplicate the bodies of loops in the[loop] rule, so each signal will end up in a
di$erent�, potentially bound to a di$erent valueÑakin to the strategy that circuit semantics employ.
This approach, however, does raise a signi"cant concern: what happens if the[merge] rule moves
�� expressions in such a way that the environment captures variables it did not bind before? Our
calculus avoids this problem by working only with programs that havecorrect binding, as captured
by the�� CB judgment form in "gure18. (The�� CB judgment also ensures that sequential variables
are used in at most one branch of anypar, which is not related to the concerns of schizophrenia,
but does ensure determinism and is convenient to include here.)

To understand the correct binding judgment, "rst look at theseq rule. It says that the bound
signals of the "rst sub-expression must be distinct from the free signals of the second. Since the
[merge] rule moves binders based on the de"nition ofE (in "gure 13), it can move a�� out from the
"rst sub-expression only. Thus, in order to preserve the binding structure of the expression as we
reduce, we need only make sure that a� that moves out of the "rst sub-expression of aseqdoes
not capture a signal in the second sub-expression, which is precisely what the premise avoids.

The other rules all generally follow this reasoning process for their premises. ThesuspendruleÕs
premise follows exactly that reasoning, as binder may be lifted out past theS. Thepar ruleÕs second
and third premises also follow exactly the same reasoning. The "rst premise ofpar is necessary to
avoid the situation where the same signal is bound in both branches and then is lifted out from
both. The fourth premise ensures that sequential variables are used properly.

Theloop rule must ensure that the bound and free signals of its subexpression do not overlap,
as it reduces by duplicating its "rst subexpression into aloop, which acts like aseqexpression (so
the intuition for seqapplies, but with both subexpressions being the same one). Similarly, because
(loop p q) behaves like(seq p (loop q)), the premises of its rule are just the premises of theseq
andloop rules, combined.

T!"#$"% 3.1.
��  p , q , C. �� CB  C[p] �� p ��  q �� �� CB  C[q]

This theorem states that, no matter which context an expression reduces in (withC as given
in "gure 19), if the expression had correct binding before reduction, it does afterwards, too. The
proof is given as�� ��-preserve-CB in the Agda code in the supplementary material. From this we
conclude that programs with correct binding cannot exhibit incorrect variable capture.
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�� CB  p

BV : p ��  (Setof ÇvarÈ)
FV : p ��  (Setof ÇvarÈ)

Computes the bound and
free variables, respectively.
Te variables include signals,
shared variables and
sequential variables.

�� CB  nothing �� CB  pause �� CB  (emit  S)

�� CB  p

�� CB  (signal  S p)

�� CB  p �� CB  q

�� CB  (present  S p q)

�� CB  p

�� CB  (shared s := e p) �� CB  (+= s e)

BV��p�� �� FV��q�� = ��  �� CB  p �� CB  q

�� CB  (seq p q)

{ S } �� BV��p�� = ��  �� CB  p

�� CB  (suspend p S)

�� CB  p

�� CB  (�� ��. p)

BV��p�� �� BV��q�� = ��  FV��p�� �� BV��q�� = ��  BV��p�� �� FV��q�� = ��  

{ x | x �� FV��p�� } �� { x | x �� FV��q�� } = ��  �� CB  p �� CB  q

�� CB  (par p q) �� CB  (:= x e)

BV��p�� �� FV��q�� = ��  BV��q�� �� FV��q�� = ��  �� CB  p �� CB  q

�� CB  (loop p q)

�� CB  p

�� CB  (var  x := e p)

BV��p�� �� FV��p�� = ��  �� CB  p

�� CB  (loop p)

�� CB  p

�� CB  (trap  p) �� CB  (exit  n)

�� CB  p �� CB  q

�� CB  (if  x p q)

Fig. 18. Correct Binding

It should also be noted that any Esterel program that uses its sequential variables correctly either
already has correct binding or can be renamed into one that has correct binding (introducing new
wires, of course) before reducing the program. Thus, the restriction that our calculus handles only
programs with correct binding is not severe, as any already correct program can be transformed
into one which is well behaved in our calculus.

3.4 Evaluating Programs

Now that we have established the correct binding invariant and de"ned the primitive notions of
reduction, we can turn to the de"nition of the evaluator. It is shown on the top-left of "gure19. It
accepts a program and an initial environment (that captures what the host language sets the input
signals to), and it returns the signals that were emitted at the end of the instant. The output of the
evaluator ignores shared variables. However, values of shared variables can be indirectly returned
by introducing new signals whose presence depends on the values of shared variables.

The��e relation is the symmetric, transitive, re!exive closure of the�� relation, which is the

compatible closure of the�� reduction relation. The symmetric case has an additional premise

�� CB  p to ensure that all of the intermediate terms used in��e have correct binding.
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(�� ��. p) ��e  (�� ��c. done)

Eval(p , ��) = { S �� dom(��c ) | ��c(S) = present  }

p ��  q

p ��e  q

p ��e  q �� CB  p

q ��e  p

p ��e  p

p1 ��e  p2 p2 ��e  p3

p1 ��e  p3

p ��  q

C[p] ��  C[q]

p1 ��  p2 p2 �� * p3

p1 �� * p3 p �� * p

C ::= (signal  S C)
 | (seq C q)
 | (seq p C)
 | (loop C q)
 | (loop p C)
 | (present  S C q)
 | (present  S p C)
 | (par C q)
 | (par p C)
 | (loop C)
 | (suspend C S)
 | (trap  C)
 | (shared s := e C)
 | (var  x := e C)
 | (if  x C q)
 | (if  x p C)
 | (�� ��. C)
 | []

Fig. 19. Eval

��  : complete ��  p

�� (�� ��c. p)  = (�� ����c��. �� p)
�� pause  = nothing
�� nothing  = nothing
�� (loop p q)  = (seq �� p (loop q))
�� (seq p q)  = (seq �� p q)
�� (par p q)  = (par �� p �� q)
�� (suspend p S)  = (suspend (seq (present  S pause nothing ) �� p) S)
�� (trap  p)  = (trap  �� p)
�� (exit  n)  = (exit  n)

Fig. 20. Next Instant

The de"nition of Eval is written using a notation that assumes the central result of this paper,
namely thatEval is a (partial) function:

T!"#$"% 3.2.
∀ �� 1 , �� 2 , �� , p.
�� CB  (�� ��. p) ��
Eval(p , ��) = �� 1 ��
Eval(p , ��) = �� 2 ��
�� 1 = �� 2
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The above theorem states that if𝕊1 and�� 2 are both sets of signals satisfying theEval judgment in
"gure 19, then𝕊1 and𝕊2 must be equal. The proof is given aseval Óe-consistent in the Agda
code in the supplementary material.

This theorem is a corollary of the consistency of��e, which states that if two expressions are

≡e, then there is an expression that both reduce to, under the transitive re!exive closure of the
compatible closure of the reduction relation:

T!"#$"% 3.3.
��  p , q. �CB  p �� p �e  q ��
� r . p �* r  � q �* r

The proof is given asÓe-consistent , and it follows from the con!uence of reduction.
Our semantics supports multiple instants via a transformation that prepares a complete expression

for the next instant,�� , shown in "gure20. It makes four modi"cations to the expression. First, it
resets all signals tounknown and all shared variables toold via ���c�� (de"ned in "gure 13). Second,
it replaces thepauseexpressions where the program stopped withnothing. Third, it replaces
eachloop expression with aloop and seq. Finally, it adds apresent expression tosuspend
expressions that have paused. Thepresent serves to conditionally pause the body of thesuspend
in the next instant. The result is an expression suitable for use withEval in the next instant.

4 ON CONSTRUCTIVENESS

(signal  S1
(present  S1

(signal  S2
(seq (emit  S2)

(present  S2
nothing
(emit  S1))))

nothing ))
Fig. 21: A Non-constructive Program

Logical correctness and constructiveness are
key for any correct semantics of Esterel. For ex-
amples of these properties see section2.4. We
follow the de"nition of constructiveness given
by the constructive operational semantics
(COS) evaluator as referenced byBerry (2002)
and described byPotop-Butucaru(2002): non-
constructive programs reduce to stuck terms
(that are notcomplete).

In our semantics, for many expressions, this
is also the case. But, it is not the case for all of them because reductions that occur in arbitrary
program contexts sometimes giveCanmore information than it ÒshouldÓ have (more precisely,
more information that it would get by running the program directly). This extra information means
that reductions in our calculus can transform some non-constructive programs into constructive
ones that can still reduce.

For an example, consider the expression in "gure21. If we restrict our attention to the outside
part of the term (the way that the COS semantics does), it reduces only by replacing the outer
signal form with a � expression. At that point, the expression appears to be stuck becauseCan
is unable to prove thatS1is not emitted (and thus the[absence] rule does not apply) and the
present expression does not reduce (becauseS1is unknown).

There are reductions that can occur, however, at the innersignal expression, revealing infor-
mation toCan, and enabling it to determine thatS1is absent.

Speci"cally, the calculus can reduce in this context:

(� { S1 � unknown }.
(present S1

[]
nothing))
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(�� { S1 ��  unknown }.
(present
S1
(�� { S2 ��  present  }.

(seq nothing
(present  S2

nothing
(emit  S1))))

nothing ))
Fig. 22: An expression equivalent to
the expression in "gure21

and thus it can turn the inner signal form into a�� and
perform theemit, resulting in the expression in "gure22.
Being able to reduce in that context is e$ectively ÒpeekingÓ
ahead into the future non-constructively.

Once those reductions happen,Canis able to determine
that S1cannot be emitted and now the[absence] rule can
"re, eventually reducing the original expression to

(�� { S1 ��  absent }. nothing )

.
In sum, our calculus equates some non-constructive pro-

grams to constructive programs with the same logical be-
havior. Although we are not satis"ed with this aspect of our calculus and believe that it deserves
further study, such a relaxation of constructiveness is not unprecedented (Tardieu 2007).

5 WHAT THE CALCULUS CAN AND CANNOT PROVE

Our semantics lends itself to establishing equivalences between program fragments because any

two expressions that are��e to each other always produce the same result in the evaluator:
T!"#$"% 5.1.

��  p , �1 , 𝕊1 , q , �2 , 𝕊2.
�CB  (� �1. p) ��
(� �1. p) �e  (� �2. q) ��
Eval(p , �1) = 𝕊1 ��
Eval(q , �2) = 𝕊2 ��
𝕊1 = 𝕊2

This theorem is a straightforward consequence of��e being consistent; the proof is given as
Óe=>eval in the Agda code in the supplementary material.

The remainder of this section explores various equivalences (shown in "gure23) as well as
some limitations of the calculus. The proofs of the equivalences are all given inagda/calculus-
examples.agdain the supplementary material.

The "rst example, theorem5.2, shows that we can rearrange signal forms. This example works
well in our calculus. It requires only that the body expression has correct binding, allowing us to
rearrange adjacentsignal forms arbitrarily.

Next, theorem5.3shows that if anemit is followed by apresent , thepresent can always be
replaced by the taken branch. This example exposes a "rst limitation of the calculus. Although it is
still true, our calculus cannot prove this equivalence without thesignal form being visible in an
evaluation context surrounding theseq form.

In a dual to theorem5.3, theorem5.4shows that if we know that neither branch of thepresent
expression can emitS, we can replace thepresent form with its second subexpression.

Theorem5.5lets us lift aseqexpression that starts with anemit out of apar branch. Intuitively,
this equivalence is a consequence of EsterelÕs deterministic parallelism. Becauseemit is instanta-
neous and does not depend on the status of any signal, we can do it in parallel toq or beforeq
starts, whichever is more convenient.5

5This fact is crucial for many Esterel compilers, which attempt to generate static schedules for concurrent code (Potop-
Butucaru et al. 2007).
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T!"#$"% 5.2.
∀ S1 , S2 , p.
�� CB  p ��
(signal  S1

(signal  S2

p)) ��e 
(signal  S2

(signal  S1

p))

T!"#$"% 5.3.
��  S , p , q.
�CB  p �
(signal  S

(seq (emit  S)
(present
S
p
q))) �e 

(signal  S
(seq (emit  S)

p))

T!"#$"% 5.4.
∀ S , p , q. �CB  q ��
(∀ status.

S � (Can p { S � status }).S)��
(∀ status.

S � (Can q { S � status }).S)��
(signal  S

(present  S
p
q)) �e 

(signal  S
q)

T!"#$"% 5.5.
��  S , p , q.
�� CB  (par p q) ��
(signal  S

(par (seq
(emit  S)
p)

q)) ��e 
(signal  S

(seq (emit  S)
(par p

q)))

T!"#$"% 5.6.
∀ n , p , q.
�� CB  p �
q �� done �
p ��e  q �
(trap
(par (exit n+1)

p)) ��e 
(par (exit  n)

(trap  p))

T!"#$"% 5.7.
��  p , q , S.
�CB  (seq (signal S p)

q) �
(� {}. (seq (signal  S p)

q)) �e 
(� {}. (signal  S

(seq p q)))

Fig. 23. Equivalences Provable in our Calculus

When atrap is outside apar, our calculus allows us to push thetrap inside, in some situations.
Theorem5.6is one such. This calculation requiresp to be equivalent to somedone expression
q, but that is a weakness of our calculus. In fact, the two expressions are observably equivalent
without any assumptions.

Theorem5.7further generalizes Theorem5.2to rearrange binding forms across other expres-
sions. In this example, thesignal form is pulled out of theseq expression. In general, these two
expressions are observably equivalent even without the�� expression outside. Our calculus cannot
prove it, however, because the calculus needs an outer�� expression in order to perform a[merge]
in the middle of the proof.

We explored a calculus that includes a ÒliftingÓ rule that allows us to move a� term up and down
in an evaluation context. This rule makes it di%cult to establish con!uence of the calculus, however,
as the would-be lifting rule and the[merge] rule interact with each other in complex ways. In
particular, our evaluation contexts do not have unique decomposition, due topar. Accordingly, a
use of the lifting rule from one side of apar expression can block a use of the[merge] rule from
the other side. We conjecture that a lifting rule would be con!uent, but have not proven it. If we
did have such a rule, then we believe we would be able to prove theorem5.7without the need for
an enclosing empty�� expression and even be able to relax one of the assumptions of theorem5.6,
assuming only thatq is complete.
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Our calculus also cannot reason e$ectively with expressions that span multiple instants. For
example, the expression(seq (loop  pause) q) is equivalent to(loop pause), but our calculus
cannot prove it. Similarly, a common pattern is to emit a signal and pause in a loop, and also to
run that loop in parallel with some code that looks at the signal. Our calculus would not be able to
propagate the signalÕs presence because of thepause.

Another deep lack in our calculus is the ability to reason about input signals. In order for
our calculus to work with a signal, it must be bound bysignal so knowledge about it can be
manipulated via the rules for� expressions. Input signals, in contrast, might or might not be set by
the environment and our calculus cannot perform the required conditional reasoning.

6 TESTING

As we are developing a new semantics for Esterel and Esterel is a well-established language, a
natural concern is whether our semantics captures Esterel or some other, subtly di$erent language.
In order to mitigate this concern, we tested our semantics against two Esterel implementations:
Esterel v5(Berry 2000) and Hiphop.js (Berry et al. 2011), as well as an executable version ofPotop-
Butucaru et al.(2007)Õs COS semantics. Perhaps unsurprisingly, we also discovered bugs in both of
the implementations during this process (as random testing can be extremely e$ective (Yang et al.
2011)). The remainder of this section describes the testing process and the bugs discovered.

6.1 Testing for Conformance

In order to test our model against the existing semantics and implementations, we had to build
some software libraries:

â Redex COS model We built a model of the COS semantics in Redex (Felleisen et al. 2009).
The semantics is a faithful model of the COS semantics because it is a rule-for-rule translation
of the COS semantics; aside from a few syntactic di$erences (notably more parentheses), it
mirrors Potop-Butucaru et al.(2007)Õs model exactly, enabling us to simulate the behavior of
the semantics on any example program.

â Redex calculus model Our calculus is implemented in Redex; the rules shown in all of
the "gures are generated automatically from the Redex source code, and the Redex model
also enables us to explore the reduction of any example program.

â Agda/Redex bridge We built a library that can translate the reduction sequences generated
by Redex into proofs in Agda, ensuring that the speci"c, concrete terms which reduce in
Redex also reduce the same way in Agda. This process accepts a speci"c term and a reduction
sequence. It produces a proof, which then is submitted to the Agda compiler for veri"cation.

â Redex/Hiphop.js bridge We built a library that can translate Redex expressions into
Hiphop.js programs and then evaluate them. We also built a translator for a subset of Hiphop.js
programs that can translate them into Redex so they can be checked against the calculus and
the COS model. This translator does not accept all Hiphop.js programs, because Hiphop.js
programs embed JavaScript code and our model cannot evaluate the JavaScript.

â Redex/Esterel v5 bridge We also built a translator that producesEsterel v5programs
from Redex terms in the COS model and in our calculus.

Using these libraries we can test all four implementations of Esterel (the COS semantics, the
Esterel v5 compiler, Hiphop.js, and our calculus) against each other.

There is one subtle point about testing our calculus. Because it is a calculus, we need an algorithm
that can determine which of the many possible reductions we should take in order to "nd an e$ective
path to acomplete state (if one exists). To do this, we identi"ed a subset of the possible reductions
in a way that acts like an standard reduction, guaranteeing that we "nd acomplete state if the
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program is constructive, and that reduction gets stuck if it is not. This reduction relation is given
in "gure 27 with some supplementary de"nitions given in "gure28; it is explained brie!y in
section7. We use this reduction relation to guide the calculus, verifying that each step in the
standard reduction is also possible in the calculus. There are no proofs about our standard reduction
but we use it only to test our calculus against other implementations, as described in this section.

These libraries give us the ability to, given an Esterel program, determine if it produces the same
signals across multiple instants. But we also need a source of Esterel programs to test. For that
purpose, we used two approaches.

First, we took the Hiphop.js test suite, which consists of 130 Hiphop.js programs. Of those, four
usepre, a construct that is not in Kernel Esterel, and were excluded from our tests. An additional
84 use JavaScript in some non-trivial way, and therefore could also not be run in our model. Our
calculus produces the same results on the remaining 42 program as Hiphop.js.

The translation of the Hiphop.js tests into our model produces programs that have a large number
of signals, which causes problems for the process that "nds reductions in the calculus. In short, the
problem is that the exponential behavior inCantriggers signi"cant performance problems in the
calculus, enough so that running these tests appears not to be feasible. To mitigate this issue these
tests are run only against the standard reduction, which updates signal values in bulk in a single
step, and does not preform the exponential analysis on the top most environment, greatly reducing
evaluation time.

Second, we used RedexÕs capability to generate random Esterel expressions and run them in all
of the implementations to see if they agree. We have discovered (and "xed) errors in our calculus
using this method, and we currently have no known bugs. We have run over 1,800,000 random
tests and they still do periodically "nd counterexamples, but they "nd only known bugs in the
implementations.

This random testing process proved invaluable in debugging the calculus, catching several
errors that cannot be found via the proofs in Agda. For example, late in the development process,
the random tester found that an old version of the[shared] rule was incorrect. The old version
initialized the shared variables status tonew, but the COS speci"es that the initial status isold .
This bug does not invalidate any of the theorems in Agda, but it does violate the property that our
calculus and the other implementations agree. That is, the properties we can e$ectively check via
random testing are stronger than those we can check via proof (in practice).

6.2 Bugs Discovered

(shared s-outer  := e0

(seq (shared s-inner  := eouter

nothing )
(+= s-outer  e1)))

Fig. 24: A Bug Found in the Esterel v5
Compiler

During the process of validating our calculus, we discov-
ered four bugs in Hiphop.js and one bug in theEsterel v5
compiler. All of the bugs have been con"rmed by the au-
thors of the systems. All but one of the Hiphop.js bugs
have been "xed.

The bug inEsterel v5is exhibited by a translation of the
program in "gure24, wheree0 evaluates to0, e1 evaluates
to 1, andeouter refers tos-outer .

This program is non-constructive and it gets stuck in our both our calculus and the COS semantics;
it cannot reduce the innershared because the initialization of the signal depends ons-outer,
but s-outer cannot be read because there is a write pending. TheEsterel v5compiler runs the
program, incorrectly settings-inner to 0.

This program also demonstrates one of the bugs we found in Hiphop.js. Of the other three bugs,
one of them was an internal error, crashing Hiphop.js on the program(trap  (suspend (exit  0) S1)).
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set-absent : �� (Setof S) ��  ��
set-absent(�� , �� ) = 
set-absent(�� ��  { S ��  absent } , ��  \ { S })
 where S �� ��
set-absent(�� , �� ) = 
��

set-ready : �� (Setof s) ��  ��
set-ready(�� , �� ) = 
set-ready(�� ��  { s ��  ��n , ready�� } , ��  \ { s })
 where s �� �� , ��(s) = ��n , shared-status��
set-ready(�� , �� ) = 
��

���� : done done ��  done

nothing ����done  = done

done ����nothing  = done

(exit  n1) ���� (exit  n2)  = (exit  max(n1 , n2))

(exit  n) ����paused  = (exit  n)

paused ���� (exit  n)  = (exit  n)

Fig. 26. Standard Reduction Auxiliary Metafunctions

The next bug was triggered by the expression(suspend nothing  S1), and produced an error in
terms of the unde"ned value from Hiphop.jsÕs host language, JavaScript.

(signal  S-outer
(signal  S-inner

(seq
(present  S-outer  nothing  nothing )
(present  S-inner

(emit  S-outer )
nothing ))))

Fig. 25: A Bug Found in Hiphop.js

The "nal bug is exhibited by the program
in "gure 25. Both in our calculus and in the
COS semantics, theCanfunction can deter-
mine that S-inner cannot be emitted, and
that thereforeS-outer cannot be emitted.
Therefore the program is constructive, both
signals areabsent, and the program reduces
to nothing . However this program appeared
to be non-constructive to Hiphop.js.

7 STANDARD REDUCTION

Our standard reduction exists only in Redex (not in Agda, unlike the rest of the semantics). We use
it to help with our testing process, as described in section6.

Figure27shows the reduction rules. There are four di$erences between the rules of the calculus
and the rules of the standard reduction. First, expressions reduce only if they have an outer��.
Second, the[absence] and [readyness] rules set as many signals or variables as they can in a
single step. Third, the[absence] and[readyness] rules useCan�� in the calculus andCanin the
standard reduction. In the standard reduction, the extra analysis thatCan�� performs is not necessary.
Finally, the rules are oriented so that at most one applies at each step. There are two pieces to this
orientation: restricting the context in which the rules may apply and restricting the[absence] and
[readyness] rules so they apply only when no other rule applies.

To understand how the rules are oriented, consider the[absence] and[readyness] rules. They
require the body to be either done or blocked, where blocked is given in "gure28. It captures when
an expression cannot reduce because it needs the value of a signal or shared variable that is not
known or ready.

The context restriction is captured by the�� ��  E det judgment. The judgment is designed to
restrict the choice of sub-expression inpar terms so only one side is considered for reduction.
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si
gn

al
s

(� ��. E[(signal S p)]) � (� ��. E[(� { S � unknown }. p)])  where �� � E det [signal ]

(� ��. E[(emit S)]) � (� (�� � { S � present }). E[nothing])
 where �� � E det, ��(S) � { present , unknown }

[emit ]

(� ��. p) � (� set-absent(�� , 𝕊). p)
 where (�� � p blocked or p � done), 

𝕊 = { S � dom(�� ) | ��c(S) = unknown } \ Can�p, ���.S, 𝕊 	 


[absence]

(� ��. E[(present S p q)]) � (� ��. E[p])  where �� � E det, ��(S) = present [ is-present ]

(� ��. E[(present S p q)]) � (� ��. E[q])  where �� � E det, ��(S) = absent [ is-absent]

sh
ar

ed
 v

ar
ia

bl
es

(� ��. E[(shared s := e p)]) � (� ��. E[(� { s � �n , old� }. p)])
 where �� � E det, FV(e) 
 dom(��), � s � FV(e). ��(s) = �_ , ready�, n = !"#$�e , ���

[shared]

(� ��. E[(+= s e)]) � (� (�� � { s � �n + !"#$�e , ��� , new� }). E[nothing])
 where �� � E det, ��(s) = �n , new�, FV(e) 
 dom(��), � s � FV(e). ��(s) = �_ , ready�

[set-new]

(� ��. E[(+= s e)]) � (� (�� � { s � �!"#$�e , ��� , new� }). E[nothing])
 where �� � E det, ��(s) = �_ , old�, FV(e) 
 dom(��), � s � FV(e). ��(s) = �_ , ready�

[set-old]

(� ��. p) � (� set-ready(�� , 𝕊2). p)
 where (�� � p blocked or p � done), 

{ S � dom(�� ) | ��c(S) = unknown } \ Can�p, ���.S = 
, 

𝕊1 = { s � dom(�� ) | ��c(s) = �ev , shared-status� }, shared-status � {new , old}, 
𝕊2 = 𝕊1 \ Can�p, ���.sh, 𝕊2 	 


[readyness]

se
qu

en
tia

l v
ar

ia
bl

es (� ��. E[(var x := e p)]) � (� ��. E[(� { x � !"#$�e , ��� }. p)])
 where �� � E det, FV(e) 
 dom(��), � s � FV(e). ��(s) = �_ , ready�

[var]

(� ��. E[(:= x e)]) � (� (�� � { x � !"#$�e , ��� }). E[nothing])
 where �� � E det, x � dom(��), FV(e) 
 dom(��), � s � FV(e). ��(s) = �_ , ready�

[set-var]

(� ��. E[(if x p q)]) � (� ��. E[p])  where �� � E det, x � dom(��), ��(x) 	 0 [if-true ]

(� ��. E[(if x p q)]) � (� ��. E[q])  where �� � E det, ��(x) = 0 [if-false ]

�� (� ��1. E[(� ��2. p)]) � (� (��1 � ��2). E[p])  where ��1 � E det [merge]

se
q (� ��. E[(seq nothing q)]) � (� ��. E[q])  where �� � E det [seq-done]

(� ��. E[(seq (exit n) q)]) � (� ��. E[(exit n)])  where �� � E det [seq-exit]

tr
ap (� ��. E[(trap stopped)]) � (� ��. E[�p stopped])  where �� � E det [trap ]

pa
r (� ��. E[(par stopped done)]) � (� ��. E[stopped ��� done])  where �� � E det [parr ]

(� ��. E[(par paused stopped)]) � (� ��. E[paused ��� stopped])  where �� � E det [parl ]

(� ��. E[(suspend stopped S)]) � (� ��. E[stopped])  where �� � E det [suspend]

(� ��. E[(loop p)]) � (� ��. E[(loop p p)])  where �� � E det [loop]

(� ��. E[(loop (exit n) q)]) � (� ��. E[(exit n)])  where �� � E det [loop^stop-exit ]

Fig. 27. Standard Reduction Rules
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�� ��  e blocked

�� ��  (var  x := e p) blocked

�� ��  e blocked

�� ��  (:= x e) blocked

��(S) = unknown

�� ��  (present  S p q) blocked

�� ��  p blocked

�� ��  (suspend p S) blocked

�� ��  p blocked

�� ��  (trap  p) blocked

�� ��  p blocked �� ��  q blocked

�� ��  (par p q) blocked

�� ��  p blocked

�� ��  (par p done) blocked

�� ��  q blocked

�� ��  (par done q) blocked

�� ��  p blocked

�� ��  (seq p q) blocked

�� ��  p blocked

�� ��  (loop p q) blocked

�� ��  e blocked

�� ��  (shared s := e p) blocked

�� ��  e blocked

�� ��  (+= s e) blocked

s �� FV(e) ��(s) = ��n , old ��

�� ��  e blocked

s �� FV(e) ��(s) = ��n , new��

�� ��  e blocked

�� ��  E det

�� ��  (seq E q) det

�� ��  E det

�� ��  (loop E q) det �� ��  []  det

�� ��  E det

�� ��  (suspend E S) det

�� ��  E det

�� ��  (trap  E) det

�� ��  E det

�� ��  (par E q) det

�� ��  E det

�� ��  (par done E) det

�� ��  E det �� ��  p blocked

�� ��  (par p E) det

�� ��  E det

�� ��  e blocked

�� ��  p blocked

Fig. 28. Standard Reduction Auxiliary Judgments

There are threepar rules: one that always allows reductions in the left-hand side, and two others
that allow reduction on the right, but only when the left is either done or blocked.

Otherwise, the reduction rules in the standard reduction parallel those in calculus. Of course, we
do not take the compatible closure; instead we just reduce in evaluation contexts.

There is one subtle point of this standard reduction: it is not the standard reduction relation
for our calculus, but rather the one for a slightly smaller calculus. In particular, it does not bypass
constructiveness, unlike the calculus (as discussed in section4). It reaches a stuck state instead.
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8 RELATED WORK

Three decades of work on Esterel have resulted in a diversity of semantic models. A fundamental
di$erence of our semantics is that ours is a calculus rather than merely a reduction systemÑit
has an equational theory. In general, the nature of our semantics makes it better for discussing
transformations to Esterel programs and, more speci"cally, it lets us prove equivalences in arbitrary
contexts, like those discussed in section5. By the same token, our semantics is not particularly
well-suited to implementing Esterel.

Prior semantics of Esterel can be broadly categorized as follows:

â Macrostep operational semantics compute the result of an instant in big-step style, where
evaluation relates the state of a program at the beginning of an instant to the state at the end.

â Microstep operational semantics compute the result of an instant as a series of small-step
style transitions until the instant is considered terminated. Our semantics is in this style.

â Circuit semantics gives meaning to Esterel programs by translation to Boolean circuits.

Semantics of Esterel are also classi"ed as logical or constructive. Logical semantics are simpler, but
give meaning to programs that are logically correct but non-constructive. Constructive semantics
use constructive information propagation to enforce both (Berry 2002).

Finally, semantics of Esterel are distinguished by how much of the language they cover. Some
cover all of Kernel Esterel, while others cover only Pure Esterel, which omits shared and sequential
variables.

Berry and Gonthier(1992) give two operational semantics of Esterel, a macrostep logical semantics
called the behavioral semantics and a microstep logical semantics called the execution semantics.
They have proved these equivalent and, for the latter, proved a con!uence theorem.

Berry (2002) gives an update to the logical behavioral (macrostep) semantics to make it construc-
tive. The logical behavioral semantics requires existence and uniqueness of a behavior, without
explaining how it could be computed, while the constructive behavioral semantics introducesCan
to do it in an e$ective but restricted way.Berry (2002) also gives the state behavioral semantics,
another macrostep semantics.

The constructive operational semantics (COS) "rst appears inPotop-Butucaru(2002)Õs thesis.
It is a microstep semantics that uses program decorations track control !ow and avoid rewriting
the program. The COS model, like the constructive behavioral semantics, avoids giving meaning
to non-constructive programs, but unlike the behavioral semantics, it provides a guide toward
e%cient implementation.

Like some of those semantics, our semantics handles the larger language (Kernel Esterel) and
accounts for constructiveness. Unlike all of those semantics, our semantics works by term rewriting,
substituting equals for equals and simplifying programs, which makes it a good basis for proving
program fragment equivalences.

Circuit semantics, such at those that appear inBerry (2002) andPotop-Butucaru et al.(2007),
are the semantics generally used by Esterel implementations like Hiphop.js andEsterel v5. These
implementations use circuits as an intermediate representation during compilation.

These semantics can be used for program optimization (as ours can too), but in a di$erent way
than ours. Because the translation to circuits is complex, it is di%cult to connect transformations
done at the circuit level back to the source level, so these semantics would not form a good basis
for, say, refactoring tools, or other more human-centered tasks. Another contrast is that these
semantics are much better suited to whole-program optimizations (e.g., using existing CAD tools
to simplify the circuit) whereas our semantics is better suited to local transformations.

Additional semantics includeTardieu(2007)Õs, who uses a di$erent technique than constructive-
ness to eliminate logically incorrect programs. It handles only Pure Esterel.
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Our semantics of Esterel closely follows the work ofFelleisen and Hieb(1992) on semantics for
programs with state. In particular, we borrow the idea of internalizing state into terms using a�
term that binds a partial store embedded at any level in a term. However, unlike Felleisen and Hieb,
because of EsterelÕspar construct, we do not have unique decomposition into an evaluation context
and redex. This means that the[merge] rule can merge from both sides of apar into the same
position, which complicates our proofs. Our semantics also has to handle many Esterel-speci"c
notions, which are not a concern inFelleisen and Hieb(1992)Õs work.
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