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1 INTRODUCTION

The language Esterel has found success in many safety-critical applications. It has been useq
creation and veri“cation of the maintenance and test computer, landing gear control comp
and virtual display systems of civilian and military aircraft at Dassault Aviatidde(ry et al. 2000
the control software of the N4 nuclear power plants; the Airbus A320 !y-by-wire system; and the
speci“cation of part of Texas InstrumentOs digital signal proces®es\(eniste et al. 2002

This success with real time and embedded systems in domains that need strong guarantees
can be partially attributed to its computational model. Esterel treats computation as a series of
deterministic reactions to external stimuli. All parts of a reaction complete in a single, discrete time
step, called afinstant Furthermore, in this synchronous reactive paradigBefiveniste and Berry
1991 Benveniste et al. 2002each instant is isolated from interference by the outside environment
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once the reaction begins. In addition, instants exhibit deterministic concurrency; each reaction may
contain concurrent threads without execution order a$ecting the result of the computation.

This combination of synchronous reactions with deterministic concurrency makes formulating
the semantics a challenging problem. Existing semantics tend to take two forms. The "rst, and
most widely used, are semantics that give meaning to programs through a translation to circuits.
These semantics are excellent for compilation and optimization. However they are not ideal for
programmers, who would rather reason in terms of the source program, not its compiled form.

The second form are operational semantics that eschew term rewriting in favor of decorating
terms with various !avors of code pointers and state annotations to track execution. These semantics
are easier for programmers to reason with but give meaning only to whole programs. They do not
lend themselves to compositional reasoning about program fragments, which programmers need.

To obtain the best of both of these approaches, we buildRdotkin (1979 and Felleisen and
Hieb (19920s work on equational theories of programming languages. These theories model
languages with a set of axioms that specify when source-level terms are equivalent. As a result,
they provide a single framework for both reasoning about how a program will run (e.g. reduce to
an answer) using only the source text of the program, and for justifying program transformations
in host of applications: compiler transformations, refactorings, program derivations, etc.

This paper reports on the "rst equational theory of Kernel EsterBe(ry 2003. Developing
such a theory is tricky because of the highly non-local nature of evaluation in Esterel. To maintain
determinism and synchrony, evaluation in one thread of execution may a$ect code arbitrarily
far away away in the program, even if that evaluation does not directly modify shared state. For
instance, the selection of a particular branch of execution in one thread may immediately unblock
a diserent thread of execution. The selection of the other branch may render the entire program
invalid. These non-local execution and correctness issues are at the heart of EsterelOs notions of
Logical Correctnessd Constructivenesand have informed the choice of techniques used for
previous semantics. The circuit semantics match both notions well because they are intimately tied
to whether or not a given cyclic circuit settles. The operational semantics handle these properties by
performing full program passes on each evaluation step to both propagate execution information to
the entire program, and determine which locations in the program are safe to evaluate. A calculus,
however, cannot use either of those techniques. To this end our calculus borrowsFielhaisen
and Hieb(19920s equational theory of state aRdtop-Butucary(20030s Constructive Operational
Semantics to give the "rst calculus for Esterel.

The remainder of this paper consists of seven sections. Seétjgmovides an introduction to
Esterel and to the speci”c syntax we use for Kernel Esterel. Seciiexplains the semantics and our
central results, which have all been checked in Agda. With the semantics de"ned, the paper moves
on to discuss implications of speci“c aspects of our semantics. Sedtitincusses constructiveness
and how it interacts with our semantics. Sectidngives some example equivalences that our
calculus supports and discusses others that it does not. Our semantics is executable and 8ection
discusses how we test that our semantics is faithful to preexisting semantics and implementations.
In short, we designed and implemented an executable version of our semantics and used it to "nd
bugs in Esterel implementations. We also automatically typeset the "gures in the paper from the
semantics and use it to test all of the examples in the paper. Segtdiacusses a standard reduction
that we designed to aid in testing but have not proven, and we conclude with a discussion of related
work in section8.
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p, g = 6ignal Sp)|Geqpq)|emit S | present Spq) | par p q)

| nothing | pause| (oop p) | Guspendp ) | trap p) | Exit n)
| shareds:=ep) | (+=se)| var x =ep) | (=xe) | xpQq)

S signal variables X sequential variables
s shared variables e host expressions

Fig. 1 Esterel Syntax

2 A SENSE OF ESTEREL

This section provides some background on Esterel both to introduce the language to those not
familiar with it and to orient Esterel experts with the particular notation we have chosen for Kernel
Esterel. Figurel shows the syntax we use for our Esterel calculus.

Evaluation of an Esterel program is unlike conventional programming languages in that it
proceeds in a series d@ristants Each instant happens in, essentially, no time and appears atomic
from the outside. An instant is triggered by a change in the state of the outside world. The external
state changes of the world are communicated to Esterekiggals Within each instant, each signal
can either be present (set), absent (not set), or in an indeterminate state, where it is not yet known
if it will be present or absent. Once a signalOs value becomes known in a speci'c instant, it cannot
change. Accordingly, the outside world may, in between instants, set a signal to present or it may
not, indicating that its value is as yet undetermined (as the program itself may setQce the
instant begins these signal values cannot be modi“ed by outside world, preventing interference
with the computation. Once an instant completes, the Esterel program will have decided the value of
all of its signals. The outside world can then observe these values, and respond by setting di$erent
signals for the next instant. The value of signals does not carry over between instants.

Esterel is typically used as an embedded language, where the outside world is some other program-
ming languagee.g, C for reactive, real-time system®¢top-Butucaru et al. 209,/Bigloo Serrano
and Weis 199kand JavaScript for GUI8Erry et al. 201}, or Racketflatt and PLT 20)For medical
prescriptions Elorence et al. 20)5The external language controls when instants take place and
sets up the signal environment for each instant. From the perspective of the host language, the
atomicity of instants gives Esterel a notion of discrete, logical time. Each instant represents one
tick of the clock, and the host language controls the Oclock speedO by explicitly starting instants.

2.1 Conditioning on Signals: present

Esterel programs can also have local signals that they [use
to communicate internally. Let us consider a few example
programs that use internal signals to get a sense of how
Esterel programs evaluate. Figureshows a "rst example.
This program has two external signalS0O:and SO,’
through which it will communicate its output. Theignal
form is a binding form that introduces a local signal (he
namedSL) available in its body. Signals that are free in the
entire program are the ones that support communication with the host language, external to Esterel.
At the beginning of the instant the values &L, SO, andSO:;are not known.

(signal SL
(seq (emit SL)
(present SL
(emit SO}
(emit SOP))

(E19. 2 A First Example

1For those familiar with Esterel: free signals in programs in our calculus correspond to input-output signals in Esterel.
2We pre"x all signal names with ars
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Theseq form is sequential compasition, so this program "remits SL, which means the signal
Sl is known to be present for this entire instant. Next, the program evaluates a signal conditional,
written using thepresent keyword in Esterel. When a signal is known to be presenprasent
form is equivalent to its "rst sub-expression, in this cag@mit SOL So this progranemits SO.
and then terminates, ending the instant witt01 present and withSO absent.

Esterel also supports a deterministic form of paralleligm—
and indeed if we replace the sequential composition in {g- (signal SL.
ure 2 with parallel composition, as shown in "guré&, the (par (emit S
program is guaranteed to behave identically. Speci“cally, (present SL .
the present form in the second arm of th@ar (concep (em!t SO}
tually) blocks until the signaSL is emitted or we learn it (emit SOP))
cannot be emitted in this instant. So the "rst arm of th&i9. 3 This time with par
par is the only part of the program that can progress, and once it performs(@mit Sb), that
unblockspresent form, enabling(emit SO)to happen.

In order for apresent expression to become unblocked

and evaluate the second sub-expression, the Esterel|pro- (signal S':_SL
gram must determine that given signal cannot be emitted (presen (emit SO1
in this instant. One way this can happen is that there are no (emit SOP)

occurrences ofemit Sb). So, if we remove théemit SL)
from our running example, as shown in "guré, then the
program will emit the signalSO.
The way that t works helps guarf—, .
y presen Psd signal SL1

antee Esterel®s form of deterministic conc:uqs .
(signal SL2

rency. Until a particular signalOs value be- . .
: (par (present SL1(emit SL2 nothing)
comes known, the program simply refuses to (present SL2(emit SL nothing ))))

make a choice about which branchto run. This o ]
style of conditional raises many interesting 19- 3 Cyclic signal dependencies
questions about how apparent cyclic references interact with each other, however. For example,
what should the program in "gures do? qothing is the Esterel equivalent ofinit or void in

other languages.) How such programs behave is well-studied in the Esterel community and touches
on the notions of logical correctness and constructiveness, which we return to in se€tién

Fig. 4 A signal never emitted

2.2 Running for Multiple Instants: pause

So far, all of the example programs have terminated ina .

single instant but, in general, an Esterel program might (signal SL

run to some intermediate state and therause. When all (par (seq pause

of the parallel branches of some program have paused or (emit SL)

terminated, then the instant terminates. During the next (present SL .

instant, however, evaluation picks up right where it left (em!t SO}

03$, with whatever remains of the program. ) o (emit SO))
The pause expression brings the host language®s notibl9- 8 Multiple instants

of logical time into Esterel. From the Esterel programmerOs perspective, every instruction in the
language isnstantaneouStaking zero logical timeNwith the exception gfause, which takes one
unit of time. This e$ectively stops a thread of execution when it reachasise, until the host
language starts the next time step. At the start of the next instant, one unit of time has passed, so
the pauses will have had enough OtimeO to complete and the program will resume from that point.
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As an example, consider the program in "gufe As it starts, the second arm of thgar blocks,
as with the example in "gure3. The "rst arm of thepar "rst evaluatespause, which means that
that arm of thepar has terminated for the instant, and cannot reach t{@nit SL) until the next
instant. Accordingly thepresent takes the else branch, safe in the knowledge that(emit SL)
can happen this instant. In the next instant, the program resumes from gamise it hit the
previous instant. Therefore onl$L is emitted in the second instant.

2.3 Determining That a Signal Cannot be Emiled: Catr

Determining whether or not a signal can be
emitted is not simply a matter of eliminat-
ing untaken branches ipresent expressions
that have executed and then checking t

(signal SL1
(signal SL2
(signal SL3

ne
(par (present SL1

remaining emit expressions. Sometimes,
present may be blocked on some as-yet ing
terminate signal, but portions of its branche
are already known to be unreachable becat

a
e-
$S
Ise

(present SL2
(emit SO1)
(emit SL3))
(present SL2

other signal values are known, enabling us to (emit S02)

declare that some signal is absent. (emit SL3))
For example,~consider the program in "g- (seq

ure 7. The parOs "rst sub-expression is|a (emit SL2)

present and its second is aeq. Thepresent (seq

expression is blocked o8L1 Of course, the (present SL3 pause nothing)

last expression in theseq expression emits (emit SL1)))))

SL1 but beware: it is preceded by anoth
present expression that may or may n
pause. If it does pause, then tiiemit SL) happens in a future instant (so we take the OelseO
branch of thepresent on SLJ). If it does not pause, then th@mit SL1) happens in the current
instant (and so we take the OthenO branch oftesent on SLJ). LetOs work through how Esterel
evaluates this complex interplay of signals and branchepaif expressions.

FirstSLZis emitted. Once it is, it is clear which branch the innpresent expressions will take,
even though they cannot yet run because we do not yet know ab8ui. In particular, neither
one can take their OelseO branch and thus none oftiiet SL3) expressions can be evaluated.
Accordingly we can now reduce th@resent SL3 pause nothing) to nothing . From there we
can evaluatg§emit SL1), which unblocks thgoresent on SLJ, which emits the output signaSO.

The most important step in this sequence was when Esterel decided$héicannot be emitted.
The decision procedure for determining when a signal cannot be emitted in the current instant is
calledCar. It follows the same reasoning we have here, but accounts for other details of the core
language of Esterel. For example, if the "rst sub-expression e&é@cannot terminate in a given
instant,Can will rule out any emissions in the second sub-expression.

The full de"nition is given in "gures15and 16 and is explained in sectiof.2

:j;lr:ig. 7 Can

2.4 Geling Stuck: Logical Correctness and Constructivity

The style of instantaneous decision making in Esterel, facilitated@aa, leads to programs with
no meaning, even though a traditional programming language would given them meaning. Such
programs are calletbgically incorrect
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Logical correctness can be thought of as a consequence of the instantaneous nature of decision
making in Esterel: if nonpause expressions take no logical time, then decisions about the value of
a signal are communicated instantly and that value cannot change. Therefore, the program should
behave as if that value was determined at the start of the instant. Therefore, there should be exactly
one value for each signal. Some programs, however, have zero or multiple possible assignments.
Consider the program in "gure3. No matter the de"nition ofCan, S1 cannot be set to either present
or absent. IfS1 were present, the program would take the "rst branch of the condition, and the
program would terminate without having emitte&1. If S1were set to absent, the program would
chose the second branch and emitting the signal. Both executions lead to a contradiction, therefore
there are no valid assignments of signals in this program. This program is logically incorrect.

The opposite is true of the signals in the program ffy_.

"gure 9. Here, ifS1is chosen to be present, the conditionagSlgnal Si . .

will take the "rst branch andS1will be emitted, justifying (present S1nothing (emit ST))
the choice of signal value. However, if the signal is chogéid- 8 No possible value fo1
to be absent, the signal will not be emitted and the choice of absence is also justi"ed. Thus there are
two possible assignments to the signals in this program, and this program is also logically incorrect.

A related notion,constructivenesarises from an ordef, .
of execution imposed bgeqandpresent . All decisions (signal S1 . .
in the "rst part of a seq must be made before decisions|in (present S1(emit S nothing ))
the second part and the value of a signal being condition&dd- 2@ Too many values fo61
on by present must be determined before decisions within either of its branches can be made.
Decisions that may a$ect sibling branches impar, however, may happen in any order.

To ensure these ordering constraints, Esterel imposes an order on information propagation:
decisions about the presence of a signal can only be used by the portion of the program that is
after (in the sense of the ordering imposed bgg andpresent) it is emitted. Thus, programs that
are logically correct may still be rejected because there is no order in which to run the program
that will arrive at the single, valid assignment. Such programs are called non-construtti. all
logically correct programs are constructive, but the converse is true: all constructive programs are
logically correct. Put another way, making a guess about the value of a signal and backtracking if
the guess turns out to be wrong would admit logically correct, but non-constructive, programs.

Succinctly, a program is constructive if it is logically car=—,
rect, and the values of signals can be determined withp{gnal S1 _ _
any speculation: a signal is present only after it has been(Present S1(emit S (emit S1))
emitted, and a signal is absent only aft€ar determines| (signal S1

=

it cannot be emitted. (seq (present S1

Example non-constructive programs are shown in '|g- nothing
ure 10, The "rst program has only one possible assignment ~__nhothing)
for S], as it is emitted by both branches of the conditional. (emit S1)))

Becauseresent requires that the value 0§1be known | Fig. 10 Constructiveness examples
before executing a sub-expression, however, there is no
valid order in which to execute the code, and the program is rejected as non-constructive. A similar
phenomena can be seen in the second program in "gligebut with seq.

The two ordering constraints can interact. In the example in "guré, the (emit SLJ) is in asec
that may or may notpause, which prevents us from determining Lz is emitted.

Non-constructive programs are handled two di$erent ways by Esterel implementations. Some
approximate constructiveness with a conservative static analysis and reject programs they cannot

3The use of the name OconstructiveO arises from connections to constructiveMiagidlér et al. 201)2
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prove constructive on all inputs. This is the default behavioredterel v5Berry 2000. Others treat
non-constructivity as as runtime error, raising an error if, during an instant, the program cannot
determine a value for all signals. This is the behavior of HiphopHsi(y et al. 201}, and Esterel v5
when used with thel !ag.

In the circuit semantics for Esterel, a nop-, .
constructive programs is one that, when com-(51g,nal St
piled to a circuit, will cause the circuit tg (signal SL2 . .
misbehave, never settling because of instan- (par (present SL1 (emit SL2) nOthl_ng)
taneous cyclic dependencies between inputs (seq (pr?sent SL2 pause nothing)
and outputs of some of the gates. That is, a pro- ) (emit SL1))))
gram is constructive if and only if its circui F19- 11 Getting stuck
stabilizes within some "xed delayBerry 2002Mendler et al. 2012

Non-constructive programs usually get stuck in our calculus, but they do not always. The issues
here are subtle and revisited in sectign

2.5 Loops,suspenc Non-local Exits, Variables, and the Host Language

Our calculus also covers the rest of Kernel Esterel. {th@p p) and(exit n)forms allow non-
local control. Roughly speakingexit n)will abort execution up the then+1" enclosing(trap p),
reducing it tonothing . These can be used for exception handling, but also for non-exceptional
control low. For example, it may be simpler to express some repeating task on the assumption it
never terminates and then, in parallel, useit to abort the task when necessary. Kernel EsterelOs
trap is a simpli“ed form of EsterelOs trap where traps are named and exits refer to those names.

Theloop form is an in"nite loop, running its bodyp, over and over, but with a constraint that
the loopOs body can be started at most once in any instant. This means that the body of a loop
must either pause or exit at least once in every iteration, thereby ensuring that instants always
terminate. One subtle rami“cation of this point is that two separate iterations of a loop may run
within a single instant, but only in the situation where we "nish an iteration that was started in a
previous instant and then start a new one in the current instant (which must then pause or exit).
We return to this point in sectior3.3

Loops that fail this condition are callethstantaneouand programs with such loops are not
constructive. In our calculus, we handle this by reducing a loop in such a way that the program
gets stuck if the loop were to be instantaneous.

The suspenc form has a subtle semantics. If we are startingaspend for the "rst time, it
simply runs the body. But, if we are picking up from a previous instant where pased in the
body of asuspeng, then we test the signal. If it is present, the entiseispencis paused until the
next instant. If it is not present, evaluation continues within theispend, picking up at thepause.

Thesuspencform is used to implement many useful, high-level behaviors. One straight-forward
use is to implement a form of multiplexing, where some portion of the input signals are used
directly by several di$erent sub-pieces of the computation at once, and another portion of the
input determines which of those computation is the desired output. For example, an ALU might,
in parallel, both add and multiply its inputs and store the output in the same place. Juspend
form can be used to control whether the addition or multiplication computation happens.

Another use ofsuspend is in task management. As a work!ow is progressing there may be a
task that runs at an interval that varies over time. This repeating task is important, but there may
be an occasional situation where some more important task takes precedstggend can be
used to pause the subcomputation corresponding to the repeating task, and resume it later without
losing its current state.
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And "nally, Esterel has two forms of variables: sequential variablesdnd shared variables
(lowercases). Both of these variables refer to values and expressions in a host language, into which
Esterel is embedded. For exampleHsterel v5(Berry 2000 the host language is a subset of C,
whereas in Hiphop.jsBerry et al. 201)lthe host language is JavaScript.

Sequential variables are conventional mutable variables. To ensure deterministic concurrency,
they may be used only sequentially (any given variable may not appear free in both branches of
any speci“cpar expression).

Shared variables, on the other hand, may be modi“ed or looked at in multiple branchepaf a
expression. However, restrictions apply to ensure that the order of modi“cations is not observable.
In particular, the programOs execution cannot be inluenced by the value of the variable until after
all modi“cations have been performed (in a manner reminiscent of, but simpler tiamer and
Newton (20130s LVars).

Shared variables start each instant with their old values, carried over from the previous instant.
Multiple writes to a shared variable within an instant are collected with an associative and commu-
tative operation, which throws away the value from the previous instant. After all possible writes
are collected, the shared variableOs value is available. Tracking if a shared variable is writable uses
the same mechanism as tracking whether or not a signal is set, and shared variables are subject to
the same logical correctness and constructiveness constraints as signals.

For simplicity, our calculus restricts shared and sequential variables to be natural numbers. Shared
variables use- as the only combining operation. Sequential variables also support a conventional
conditional expressioni f, that tests if the value i® or not.

For a fuller explanation of these features and how they behave, start Withop-Butucaru et
al. (20030s bookompiling Estereespecially the "rst two chapers. The semantic rules in "guré
also provide more details on how these constructs work.

3 THE ESTEREL CALCULUS

The core of our calculus is a reduction relation on program expressions that corresponds to a
single-step of computation within one instant. This relation captures a notion of simpli“cation,
where each computational step brings us closer to a "nal answer. Thus, the reduction induces
an evaluator for the language. Furthermore, the relexive, symmetric, and transitive closure of
the relation together with its closure over arbitrary contexts gives rise to an equivalence relation
between programs terms, which is our calculus.

The remainder of this section explores the de"nitions that comprise the calculus, speci“cally the
de"nitions shown in "gure 12. Section3.1shows the basic notion of reduction that our calculus
supports and sectiol.2describes our ouCar function. The judgment form ., captures how
signals are to be used in Esterel programs, and is described in segtibRinally section3.4gives
the de"nitions of Eval and , and the central result of this work, namely th&tval is a function.

Before diving into the rules, however, we need a to extend heon-terminal to track information
about the term as it reduces. Figui&shows the two extensions. First, th{B50p p q) expression
formis similar to a(seq p (Loop q)) and is used by the loop reduction rule (discussed in secticih

The other extension is thé 0. p) expression form. It pairs an environmen®) with an Esterel
expression. The environment records what we have learned about the signals and variables in
this instant for the contained subexpression, and various rules either add information t@tbe
exploit information recorded as the program reduces. We keep the environments local to speci'c
expressions in order to facilitate local reasoning.
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Pp—dq p=eq
Our notion of reduction; the primitive Te re flexive, transitive, symmetric,
computational steps of our calculus context closure of

Can:p 6 — { S: (Setd®), K: (Setok), sh: (Seto$) } Eval!"p!0!—!#$%&S)
Determines the signals an expression can emit  Runs the program for a single instal

s P and returns the emied signals
A well-formedness condition on programs :complete — p
ensuring that signals and variables are Prepares a fully-reduced program fc
well-behaved the next instant

Fig. 12 An overview of the main definitions

p,q:i=... Empty Environment : {}
: é@o_gppz) q) Singleton Environments : { C var B> C val E’
status ::=present {S+— status }
| absent {s+ (n,shared-status) }
| unknown {x—n}
shared-status ::=ready |old |new Environment Composition : 0 « 6
complete ::=done | (© 6°. done) (0, < 0,)(S) =049 if Se dom@,)
done ::=stopped | paused (0, < 0,)(9 =049 if S¢ dom@,)
stopped ::=nothing | Exit n) ... dito for sandx
paused ::=pause
| Geqpausedq) Complete Environments : 6°
| (6Op pausedq) A complee environmen is one
| (par paused paused) where no signals aranknown
| GuspendpausedS) and all shared variables aready
| trap paused)
E:=6eqEQ) Resetting Environments : 6°
| (oop E Q) Reseting a comple2 environmen
| par EQ) updaes all signalso unknown
| par p E) and all shared variabla® old
| GuspendE §) - _
| trap E) Restnc_tmg the Domalr_1 :0\{9)
I Resricting the domain of an
environmen removeshe
binding for S
Metafunctions: Embedded host language expressions
P :stopped — stopped e: hog expressions
1” nothing = nothing FVE): allx ands that appear free ire
I[P (exit 0) =nothing I"#3$e , 0]: evaluaion; produces n

1P (exit n) = exit n-1)

Fig. 13 Supplemental Structures
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(signal S p) — (o {S — unknowr.p) [signal]
(0 -E[(emit S)]) — (o ( <« {S > present }).E[nothing]) [emit]
c_(g where (S) € {present , unknowr}
S @ .-p)—(( <« {S—absent}).p) [absencdq
» whereS € dom( ),S ¢ Can[(e .p), {I.S, (S) =unknown
(0 -E[(present Spq)l) — (o -E[p]) where (S)=present [is-present]
(0 -E[(present Spq)]) — (o -.E[q]) where (S)=absent [is-absent]
(0 -E[(shareds =ep)]) = (@ -E[(o{s+— <n,old)}.p)) [shared]
" where FV§) c dom( ),v s€ FVe). (s) =¢_,readyy, n =¢vi/[e, ]
% (@ -E[(+=se)]) = (o ( « {s+—><Cwle, ],new}).E[nothing]) [set-old]
= where (s) =(_,old), FVe)cdom(),vse FVE). (s)=( ,ready)
-; (e .E[(+=se)]) — (o ( <« {s— n+Ewd/e, ],new}).E[nothing]) [set-new]
= where (s) =<n,new, FVg) c dom( ),V se€ FVE). (s) =(_,ready)
B .p)— (@( —{s—n,ready)}).p) [readyness]

wheres € dom( ),s ¢ Can[(o .p), {§.sh, (s) ={n,shared-status),
shared-status € {old , new}

% (@ -El(varx =ep)]) = (@ -El(e{x— Cu/[e, ]}.p)]) [var]
g where FV§) c dom( ),V s€ FVe). (s) =(_,ready)
2 (@ -E[(=xe)]) = (( « {x— @w/[e, ]}).E[nothing]) [set-var]
£ wherex e dom(), FVe) < dom(),v s€ FVe). (s) =(,ready)
S @ -Elif xpq)) — (o -E[p]) wherexedom(), (x)#0 [if-true ]
© (o .E[(if xpq)]) — (0 .E[q]) where (x)=0 [if-false |
@ +Elle »p)) — @1 2.Elp) [merge]
= (segnothing q) — q [seg-done]
9 (seq(exit n)q) — (exit n) [seqg-exit]
% (trap stopped) — |’ stopped [trap]
(par nothing done) — done [par-nothing ]
= (par (exit n)paused) — (exit n) [par-1exit ]
2 (par (exit ny) (exit ny)) — (exit max(n, n)) [par-2exit ]
(par p q) — (par q p) [par-swap]
(suspendstopped S) — stopped [suspend]
g (loop p) — (160P p p) [loop]
2 (l6op (exit n)q) — (exit n) [loop”stop-exit ]

Fig. 14Reduction Rules
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3.1 Reduction Rules

The rules given in "gurel4govern how computation takes place within a single instant.

The "rstrule, [signal], reduces a&ignal expression to a expression by introducing a singleton

that binds the signal taunknow.

Once a signal has an entry in a relevant the [emit ] rule records that a signal is present (using
the composition operator from "gure 13 and eliminates themit expression. The side-condition
ensures that the environment does not already indicate that the signal is absent.

In order for anemit to "re, it must be in the body of a in only a speci”c set of positions, as
captured by theE contexts, shown in "gurel3 They include the "rst sub-expression ofseq
expression, the "rst sub-expression of ®OP p q) expression, either branch of@ar, the body of
asuspencor atrap . Notably this rule does not allow an expression like . (seqp (emit S))to
reduce itsemit expression because thpgecould bepause, delaying the(emit S) to the next instant.
More generally, the expressions captured Byre guaranteed to happen in the current instant.

As we saw in sectior?.3 Car determines if a signal cannot be emitted. The rfibsencqd uses
Can (a variation ofCarthat is explained in sectiof.2 to determine that a signal cannot be emitted
and records that information in a expression, if that information is not yet recorded.

Once the status of a signal is recorded as either present or abserfishjgresent] and[is-absent]
rules can reduc@resent expressions.

The rules[shared], [set-old], [set-new], and[readyness] handle shared variables in a manner
similar to how the previous set of rules handle signals. Tlseared] rule introduces a new en-
vironment that binds the shared variable using tleen the shared expression to determine the
default value of the variable using the host languageOs evaluation function. The[setesid]
and[set-new] modify a shared variable depending on whether it has been modi“ed in the current
instant or not. If the status of a shared variable in the environmenbld , it is being modi"ed for
the "rst time in the current instant and the rulgset-old] replaces the old value in the environment
with the new value. If the status of a shared variablenisw, it has already been modi“ed in the
current instant and the rulgset-new] adds the current value and the new value in the expression
and stores the result in the environment. One subtlety of note here:[diared] rule creates an
environment which marks the shared variable akd, not new. This is because the value initially
given to a shared variable represents its default value rather than its initial value, and so acts as if
this value was set in the previous instant. Finally, theadyness] rule makes a variable change
from writable to readable. This occurs@anOs result does not contain the shared variablehich
means it will not be modi“ed in this instant and thus we can update the environment to mark
the variable as-eady. Furthermore, the side-conditions on thishared], [set-new], and[set-old]
rules (as well as the corresponding rules for sequential variables) ensure that these rules can "re
only if, for every shared variable used in the host language expression, that variable safe to be read,
e.g. is marked aseady in 6.

The rules[var], [set-var], [if-true], and[if-false ] cover sequential variables. Unlike the rules
for signals or shared variables, these rules do not refeCtr. These variables are not allowed to
be free in two di$erent arms of anpar expression, so they can be freely read and written.

The "nal rule that handleg expressions i$merge]. It combines two environments, lifting an
inner environment out to an outer one and composing them into a single environment.

There are two rules for sequential composition. If the "rst sub-expressiondshing, then
we replace the entire expression with the second branch. If the "rst sub-expression exdn
expression, however, then the entire sequence exits, discarding the second parts#dexpression.
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The next rule handlesrap . Once the body of &rap has "nished evaluating, it will either be an
exit expression onothing , which the * ("gure 13 function handles.

Thepar rules are a little more interesting. The "rst three refer to to the de"nitions sfopped
anddone in "gure 13and handle the situations when both branches are "nished for the instant.
If one side has reduced to nothing, tlipar-nothing ] rule reduces to the other one. If one side
hasexit ed and the other ipaused, the [par-1exit ] rule preempts the other branch of the par
by bubbling theexit up. If both sides havexit ed the[par-2exit] rule reduces the expression
to whicheverexit will reach the farthest uptrap . The[par-swap] rule switches the branches,
allowing [par-nothing ] and[par-1exit ] to match regardless of which branch éxit or nothing .

The[suspend] rule reduces to its body when its body has eithexit ed or reduced taothing .

This leaves us with one last pair of rulegoop] and[loop”stop-exit ]. Intuitively, we would like
an expression likéloop p) to reduce simply to jus{seqp (loop p)), duplicating the bodyp into
a seg expression which becomes the current iteration of the loop.

Such arule could give rise to in"nite loops within a single instant, however, which is forbidden in
Esterel. We capture this constraint in our calculus with th@p expression form. It is introduced
only by the reduction rule fodoop, and is meant to capture a single unrolling of the loop; the "rst
sub-expression is the part of the loop that runs in the current instant and the second sub-expression
is the body of the loop, saved to be used in the next instant. There is no rule that eliminatesa
when the "rst sub-expression isothing (unlike seq, which has theseg-done] rule). As such,
programs get stuck when they contain instantaneous loops.

One thing to note about these rules: with the exception[par-swap], they are strongly normal-
izing. The proof is given asoetherian in Agda code in the supplementary material.

3.2 The Can Function

This section describes the functidDar, a conservative analysis of the state of an Esterel program
that determines its behavior. Our de"nition is inspired Berry (20030s de"nition, generalized

to support expressions and modi“ed to handle a reduction semantics rather than one based on
annotating the program with program counters.

This function computes a conservative approximation to the behavior of some given Esterel
expression with respect to some knowledge about signals and shared variables that is encapsulated
in an environment, . In particular, it computes a set of signal§)( a set of exit codes (), and a set
of shared variabless). Any Sthat is not in the result is guaranteed not to be emitted in the current
instant (although if someSis in the result, it may or may not be emitted in the current instant).
The same holds for any shared variable in the result: ifsis not the result, then it is guaranteed
that s cannot be updated again in the current instant. If teés in the result, then it may or may
not be written to. The exit codes capture whether or not the given expression pauses, reduces to
nothing, or exits. If the expression may reduce mothing , then the codenothin will be in the
result. If the expression may pause, then the cqdes will be in the result. If the expression may
exit with the coden, then the coden will be in the result. Thus, if any of those speci“c codes are
notin the result, then we know the expression does not have the corresponding behavior.

The notation we use for the records in the de"nition @kn is similar to many record notations,
but we use the precise one iRierce(20030s bookypes and Programming Languagafe write
CarOs result as a record with three "elds, where curly braces construct records, e.gmihease
of Carreturns a record with a singleton set of signals (containi8p a singleton set of exit codes
(containingnothin ) and the empty set of shared variables. Selecting a "eld from a record uses dot
notation. For exampleCanp, .Sselects the OSO "eld from a calCar.
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:=nothin |paus|n

Can:p {S: (SetoP), K: (Setof ), sh: (Seto$) } K
Can( +p), ={ S=Can E L pg’ 2 .S\ dom(y), *“nothin = nothin
K=Can ( .p), 2K, “paus = paus
sh=Can ( ..p), ».sh\dom()} o TP
Cannothing, = {S=,K={nothin },sh= } “n —
Canpause ={S=,K={paus}, sh=} >0 B
Can(exit n), ={S=,K={n},sh=}
Can(emit S), = {S=§}, K={nothin },sh= }
max :
Can(present Sp q), = Canp, rixax( ., ») computes
where (S =present the maximum of , and
Can(present Sp q), = Canq, » Where we dene
where (S) =absent nothin <paus<0<1<
Can(present Sp q), ={ S=Canp, .S Canqg, .S,

K=Canp, .K Canqg, .K,
sh =Canp, .sh Canq, .sh}

Can(suspendp S), = Canp,

Can(seqgp q), = Canp,

wherenothin  Canp, K

Can(seqgp q), ={ S=Canp, .S Canq, .S,

K=Canp, .K\{nothin } Canqg, .K,
sh=Canp, .sh Cang, .sh}

Can(loop p), = Canp,
Can(loop p q), = Canp,
Can(par p q), ={ S=Canp, .S Canq, .S,

K={max(,, 5| . Canp, .K, , Canqg, .K}

sh =Canp, .sh Canq, .sh}
Can(trap p), ={S=Canp, .S,K={"x|x Canp, .K}, sh=Canp, .sh}
Can(signal Sp), = { S =Canp, {S absent}.S\{S},

K =Canp, {S absent} K,

sh =Canp, {S absent}.sh}
whereS Canp, {S unknown} .S

Can(signal Sp), = {S =Canp, ,.S\{S},K=Canp, , .K,sh=Canp, ,.sh}
where ,= {S unknowr}

Can(shareds=ep), ={S=Canp, .S,K=Canp, .K,sh=Canp, .sh\{s}}
Can(+=se), ={S=,K={nothin },sh=§}}

Can(var x =ep), = Canp,

Can(=x e), ={S=,K={nothin },sh= 1}

Can(if xpq), ={ S=Canp, .S Canqg, .S,

K=Canp, .K Canqg, .K,
sh=Canp, .sh Cang, .sh}

Fig. 15 Car Function
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Can:( .p) {S: (Setop), K: (Setof ), sh: (Seto$) }
Can ( .p), - =Can( ( \{S).p), - {S absent}
whereS dom( ),

(S) =unknown

S Can ( ( \{S).p), = {S wunknowr} .S

Can( .p), = =Can( ( \{9).p), = {S O}
whereS dom()
Can ( 1.p), » =Canp, ,

Fig. 16 TheCar Function for Expressions (cases are checked in order)

The three results fronCar interact with each other in order to determine the overall result.
Consider the twoseq cases. In the "rst one, the side-condition says thadthin is not in the
K "eld for the "rst sub-expression of theseq, p. Accordingly, we know thatp does not reduce
to nothing , thus it must either exit or pause. Since it exits or pauses, we know that none of the
behavior ofq is relevant as it will not be evaluated in this instant and so the resuliCsr for the
entire seq expression is just its result for thp expression. This means that

Can(seqpause(emit §), .S

is the empty set, since themit must happen in the next instant.

In the secondseq case, we know thahothin is a possible result code, and thpsmight reduce
to nothing so we have to combine the result of theandq recursive calls. Mostly this amounts to
taking the union, but note that th& case removenothin from the codes in the result gp before
performing the union. This removal accounts for the fact that, evep ifeduces tanothing , q
must also reduce tmothing for the seq expression to reduce tnothing . For example,

Can(seqgnothing pause, .K

correctly contains only the exit codpaus.

Theloop expression form, in contrast, always ignores the second sub-expression, because we
know that the second sub-expression can a$ect only future instants.

Various other cases in the de"nition afar relect the semantics of the di$erent constructs in
similar ways. The cases handlirgyesent consult the given to see if the status of the signal is
known and look only at the corresponding branch of tipgesent expression if so. The rule for
par takes into account the same behavior that the fquair rules in the reduction relation do when
computing the codes for the entire expression out of the codes of the subexpressiongafhease
uses the metafunctio® to adjust the exit codes in a manner that mimics hdvap expressions
reduce. Since thghared form introduces a new variable, its case @ar removes that variable
from the results, as it is lexically scoped. In each of these caSasjgnores thee expressions, as it
does not reason about the behavior of the host language.

This leaves thesignal and cases. Consider ho@an handlessignal expressions. The second
signal case is the more straightforward one. It says that the result for the engignal form is
the same as the result for the body ofsiggnal form when it is analyzed with no knowledge about
the signal. But there would be a problem with th@ar function if that were the only case.

To motivate the "rstsignal case inCar, consider this call:

Can(signal S2(present S2 (emit SJ) nothing)), {}.<
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If we took the seconasignal case inCar, then this would return a set containin@1. It actually
returns the empty set. The "rs¢ignal case callCarwith S2 set tounknowiand checks to see $2
is not present in the OSO portion of the result. It is not (because there denmio S2 expressions),
so Car then setsSZ to absent and reprocesses its body. This time, becaB8%eés known to be
absent, Carconsiders only the last sub-expression of theesent , thereby ignoring thelemit S1)
and returning the empty set of signals.

In isolation, analyzing the body twice seems like overkill, especially because it triggers exponen-
tial behavior in the number of nestesignal forms:* But consider this call tcCar:

Can(signal S1
(seq (present Slpausenothing)
(signal S2(present S2
(emit SJ
nothing)))), {}.S

This example input is a bit complex, but "rst notice that the innsignal expression is the same
as the previous example (and there are no otlfemit S1) expressions), so we know th&1is
not going to be emitted. ICar did not have that "rstsignal case, then it could not learn thei1
cannot be emitted and thus we would not be able to use fhlrsencd rule on this expression, and
the program would remain stuck, unable to reduce the "tesent.

Finally, for thep case, theCar function dispatches teCan ("gure 16). TheCan function looks
complex, but it is essentially the same as the tgignal cases. Itis broken out into its own function
because binds multiple signals at once; $6an recurs though the structure of the environment,
considering each of the signals that are bound. The "rst caseanf, corresponds to the "rstignal
case inCar, the second case iGary corresponds to the secorglgnal case, and the last case
in Can corresponds to the situation where there are no more signals bounél {(and ; can be
dropped as it contains only information abostandx variables, whichCar does not need).

3.3 Reincarnation, Schizophrenia, and Correct Binding

Thesignal form seems to be something close to a variable binding form, familiar from conventional
I -calculus based programming languages. It is, however, not the same and a signi“cant source of
subtlety in Esterel. The Esterel community has explored these issues in great detail and in this
section, we try to bring across the basic points and then explain how our calculus handles them.

The two central issues are the phenomena [of
schizophrenic and reincarnated signals. To understand (Iopp
them, "rst recall the central tenant of Esterel signals: every (signal SZ
signal must have exactly one value in a given instant. Now, (seq pause
consider the example program in "guré’. During the "rst | ] (emit §Z))))
instant of execution the signaSz will be absent, as theF19- 17 A Schizophrenic Loop

program pauses before emitting it. In the next instant we pick up where we left 0$. The "rst thing
that happens is that we emgZz. Then the loop body restarts. Because we have re-entered the loop
body and encountered thsignal expression afresh, thgez should now be absent. But this means
that the signalSz has two di$erent values in a single instant!

In the literature, signals which are duplicated by a loop body in within one instant are called
reincarnatedIf a reincarnated signal obtains di$erent values in each of its incarnations, it is called
schizophrenicSchizophrenic signals, however, merely appear to violate the single-value-per-instant

4This exponential behavior a$ected the testing of our semantics against existing Esterel semantics and implementations;
see sectiorb and section/ for more.
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rule. Because instantaneous loops are banned, the number of times a loop body can be entered is
bounded. This means that the number of reincarnations of any signal is also bounded. Therefore
we consider each incarnation to, in fact, be a separate signal, removing the apparent violation.

This resolution shows up directly in Esterel compilers and circuit semantics. Naive treatment of
schizophrenic signals can cause unstable loops in the corresponding circuit, breaking the guarantee
that all constructive programs translate to stable circuits. Therefore, many Esterel compilers
duplicate parts of loop bodies with schizophrenic signals to remove the apparent violation of the
single-value-per-instant rule, avoiding cross-loop cycl8g(ry 2002Potop-Butucaru et al. 2007
Schneider and Wenz 2001n short, each incarnation of a signal gets a separate wire.

Esterel semantics such as the Constructive Operational Semaftats|f-Butucaru 20Q2and the
Constructive Behavioral SemanticB€rry 2002 take a di$erent approach, handling such signals by
carefully arranging to OforgetO a schizophrenic signalOs "rst value when the second one is needed.

Our semantics takes an approach inspired by the circuit perspective, meaning we do not treat
signals in a conventional way. More precisely, we do not assume the variable conve@riidregt
1984, nor do we include ari rule. Indeed, we think of signals as if they name wires.

This perspective means that schizophrenic and reincarnated signals are, at "rst glance, handled
very simply. We just duplicate the bodies of loops in tfleop] rule, so each signal will end up in a
di$erentp, potentially bound to a di$erent valueNakin to the strategy that circuit semantics employ.
This approach, however, does raise a signi“cant concern: what happens ffrtteege] rule moves

expressions in such a way that the environment captures variables it did not bind before? Our
calculus avoids this problem by working only with programs that hawerrect bindingas captured
by the cgzjudgment formin"gurel8 (The cgjudgment also ensures that sequential variables
are used in at most one branch of agar, which is not related to the concerns of schizophrenia,
but does ensure determinism and is convenient to include here.)

To understand the correct binding judgment, "rst look at tieeq rule. It says that the bound
signals of the "rst sub-expression must be distinct from the free signals of the second. Since the
[merge] rule moves binders based on the de"nition Bf(in "gure 13), it can move a out from the
"rst sub-expression only. Thus, in order to preserve the binding structure of the expression as we
reduce, we need only make sure thapahat moves out of the "rst sub-expression ofseq does
not capture a signal in the second sub-expression, which is precisely what the premise avoids.

The other rules all generally follow this reasoning process for their premises. JimpencruleOs
premise follows exactly that reasoning, as binder may be lifted out pas&tEhepar ruleOs second
and third premises also follow exactly the same reasoning. The "rst premigeanfis necessary to
avoid the situation where the same signal is bound in both branches and then is lifted out from
both. The fourth premise ensures that sequential variables are used properly.

The loop rule must ensure that the bound and free signals of its subexpression do not overlap,
as it reduces by duplicating its "rst subexpression intd@p, which acts like aseqexpression (so
the intuition for seq applies, but with both subexpressions being the same one). Similarly, because
(loop p q) behaves likgseqp (loop q)), the premises of its rule are just the premises of theg
andloop rules, combined.

TI"#$"% 3.1.

p.gq.C. o C[p] P q cs C[q]

This theorem states that, no matter which context an expression reduces in (@i#s given
in "gure 19, if the expression had correct binding before reduction, it does afterwards, too. The
proof is given as -preserve-CB in the Agda code in the supplementary material. From this we
conclude that programs with correct binding cannot exhibit incorrect variable capture.
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cg nothing cs pause ce (E€MIt S

BV:p  (Setof QvarE)
cs P cs P cs g FV:p (Setof CvarE)

Computes the bound and

free variables, respectively.
Te variables include signalg,
cs P shared variables and
sequential variables.

ce (signal Sp) ce (present Sp q)

ce (Shareds:=ep) cs (+=s¢€)
BVp FVq = cs P cs G {S} BVp = ce P ce P
ce (seqp q) ce (Suspendp 9 ce (-P)
BVp BVq = FVp BVQqg = BVp FVq =
{x|x FVp } {x|x FVQq }= wP
ce (par p q) cs (FXx€)
BVp FVq = BvVqg FVqg = cs P cs 0 cs P

ce (100P p Q) s (var x =ep)
BVp FVp = ce P cs P cs P cs
ce (loop p) ce (trap p) ce (€xit n) ce (f XpQq)

Fig. 18 Correct Binding

It should also be noted that any Esterel program that uses its sequential variables correctly either
already has correct binding or can be renamed into one that has correct binding (introducing new
wires, of course) before reducing the program. Thus, the restriction that our calculus handles only
programs with correct binding is not severe, as any already correct program can be transformed
into one which is well behaved in our calculus.

3.4 Evaluating Programs

Now that we have established the correct binding invariant and de"ned the primitive notions of
reduction, we can turn to the de"nition of the evaluator. It is shown on the top-left of "guié. It
accepts a program and an initial environment (that captures what the host language sets the input
signals to), and it returns the signals that were emitted at the end of the instant. The output of the
evaluator ignores shared variables. However, values of shared variables can be indirectly returned
by introducing new signals whose presence depends on the values of shared variables.

The e relation is the symmetric, transitive, relexive closure of the relation, which is the
compatible closure of the reduction relation. The symmetric case has an additional premise

ce p to ensure that all of the intermediate terms used i have correct binding.
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( .p) e ( “.done)

C ::=6ignal SC)

Eval(p, )={S dom(°)| (S =present } | GeqC q)
| Seqp C)
| (oop C q)
P 4 pedq wp | (6op p C)
| present SCq)
P eq aep | present Sp C)
| par C q)
Pr €P2 P2 €Ps | par p C)
| (oop C)
P ep P € Ps | GuspendC S
| trap C)
P q | Ghareds:=eC)
U E— | var x =e C)
Clp]  Cl[d] | if xCq)
| (f xpC)
P1 P2 p. *ps I [(] ’ C)
Pr *Ps P *p
Fig. 19Eval
.complete p
( “p) =( °.p
pause = nothing
nothing = nothing
(looppqg) = Geq p (loop q))
(seqp q) = (seq paq)
(par p q) = par p 0
(suspendp S = (suspend(seq (present Spausenothing) p)9
(trap p) = trap p)
(exit n) = exit n)

Fig. 20Next Instant

The de"nition of Eval is written using a notation that assumes the central result of this paper,
namely thatEval is a (partial) function:
TI"#$"% 3.2.

v 1, 2 !p'

e (-P)
Eval(p, )=
Eval(p, )=

1
2

1= 2
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The above theorem states that$f; and , are both sets of signals satisfying ti€val judgment in

"gure 19 thenS, and S, must be equal. The proof is given asal Os-consistent in the Agda
code in the supplementary material.

This theorem is a corollary of the consistency o€, which states that if two expressions are

=e, then there is an expression that both reduce to, under the transitive relexive closure of the
compatible closure of the reduction relation:
TI"#$"% 3.3.
P.g. Fes P p=eq
ar.p—-*fraqgq—*r

The proof is given a®e-consistent , and it follows from the con!uence of reduction.

Our semantics supports multiple instants via a transformation that prepares a complete expression
for the next instant, , shown in "gure 20. It makes four modi“cations to the expression. First, it
resets all signals tanknown and all shared variables told via 6° (de"ned in "gure 13. Second,
it replaces thepause expressions where the program stopped withthing. Third, it replaces
eachloop expression with doop and seq. Finally, it adds gpresent expression tosuspenc
expressions that have paused. Theesent serves to conditionally pause the body of tseispenc
in the next instant. The result is an expression suitable for use véttal in the next instant.

4 ON CONSTRUCTIVENESS

Logical correctness and constructiveness are __
key for any correct semantics of Esterel. For ex- (signal S1
amples of these properties see sectiord We (present S.l
follow the de"nition of constructiveness given (signal 82.
by the constructive operational semantics (seq (emit SJ
(COS) evaluator as referenced Bgrry (2003 (present ﬁ(z)zthi n
and described byotop-Butucary(2003: non- (emit g]))))
constructive programs reduce to stuck terms nothing ))
(that are nOtcon.lplete)' . Fig. 21 A Non-constructive Program
In our semantics, for many expressions, this

is also the case. But, it is not the case for all of them because reductions that occur in arbitrary
program contexts sometimes giv@ar more information than it OshouldO have (more precisely,
more information that it would get by running the program directly). This extra information means
that reductions in our calculus can transform some non-constructive programs into constructive
ones that can still reduce.

For an example, consider the expression in "gue If we restrict our attention to the outside
part of the term (the way that the COS semantics does), it reduces only by replacing the outer
signal form with a p expression. At that point, the expression appears to be stuck bec@ase
is unable to prove thaS1is not emitted (and thus thgabsencq rule does not apply) and the
present expression does not reduce (beca&ks unknow).

There are reductions that can occur, however, at the ineégnal expression, revealing infor-
mation to Car, and enabling it to determine tha®1is absent.

Speci“cally, the calculus can reduce in this context:

(@ {S1 — unknown }.

(present S1
L]
nothing))
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and thus it can turn the inner signal form into a and

perform theemi t, resulting in the expression in "gure?2. ( {S1 unknowr.

Being able to reduce in that context is e$ectively OpeekingO (grfsent
ahead into the future non-constructively. ( {S2 present }.

Once those reductions happe@ar is able to determing (seqnothing
that S1cannot be emitted and now thgabsencd rule can (present S2
"re, eventually reducing the original expression to nothing

( {S1 absent}.nothing) _ (emit S1)))
nothing ))

yFd9- 22 An expression equivalent t
pihie expression in "gure?l

O

In sum, our calculus equates some non-constructive |
grams to constructive programs with the same logical
havior. Although we are not satis"ed with this aspect of our calculus and believe that it deserves
further study, such a relaxation of constructiveness is not unprecedenteddjeu 200Y.

5 WHAT THE CALCULUS CAN AND CANNOT PROVE
Our semantics lends itself to establishing equivalences between program fragments because any

two expressions that are e to each other always produce the same result in the evaluator:
TI"#$"% 5.1.
p 1911511(1162152-

Fes (@ 0. p)
(0.p)=e ©6..q)
Eval(p ,0,) =S,
Eval(q,0,) =S,
S,=S,

This theorem is a straightforward consequence o being consistent; the proof is given as
Oe=>eval in the Agda code in the supplementary material.

The remainder of this section explores various equivalences (shown in "dieas well as
some limitations of the calculus. The proofs of the equivalences are all givagda/calculus-
examples.agdain the supplementary material.

The "rst example, theoren®.2, shows that we can rearrange signal forms. This example works
well in our calculus. It requires only that the body expression has correct binding, allowing us to
rearrange adjacergignal forms arbitrarily.

Next, theorenmb.3shows that if anemit is followed by apresent, the present can always be
replaced by the taken branch. This example exposes a "rst limitation of the calculus. Although it is
still true, our calculus cannot prove this equivalence without teiggnal form being visible in an
evaluation context surrounding theeg form.

In a dual to theorent.3 theorem5.4shows that if we know that neither branch of thpresent
expression can emig, we can replace theresent form with its second subexpression.

Theorem5.5lets us lift aseq expression that starts with aemit out of apar branch. Intuitively,
this equivalence is a consequence of EsterelOs deterministic parallelism. Begaugeinstanta-
neous and does not depend on the status of any signal, we can do it in paraltebtcbeforeq
starts, whichever is more convenient.

SThis fact is crucial for many Esterel compilers, which attempt to generate static schedules for concurrentruie{
Butucaru et al. 2007
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TI"#$"% 5.2. TI"#$"% 5.3. TI"#$"% 5.4.
vS,S,p. S.p.q. S,p.Q. Fes q
ce P I_C_B p = ( status.
(signal § (signal S S¢ (Canp { S status }).S)
(signal S (seq(eggesn)t ( status.
(sigEZi)I eSZ (2 .Se (Cang { S+ status }).S)
(signal S D (signal S
p) Q) =¢ (present S
(signal S 8)) e
(Seq:)e);"'ts’ (signal S
e))
TI"#$"% 5.5. TI"#$"% 5.6. TI"#$"% 5.7.
S,p.q. Vn,p,d. p,q,S_
cs (Par p q) s P = ee (seq (signal Sp)
(signal S q done — a) =
(par (seq Ppeq= (e {}- 6eq(signal Sp)
(emit § (trap ' q)) =e
p) (par (exit n+1) (e {}- 6ignal S
) e D) e (seqp a))
(signal S (par (exit n)
(seq(emit S (trap p))
(par p
a)))

Fig. 23 Equivalences Provable in our Calculus

When atrap is outside gpar, our calculus allows us to push thteap inside, in some situations.
Theorem5.6is one such. This calculation requirgsto be equivalent to somédone expression
q, but that is a weakness of our calculus. In fact, the two expressions are observably equivalent
without any assumptions.

Theorem5. 7further generalizes Theorer.2to rearrange binding forms across other expres-
sions. In this example, thsignal form is pulled out of theseq expression. In general, these two
expressions are observably equivalent even without thexpression outside. Our calculus cannot
prove it, however, because the calculus needs an outexpression in order to perform merge]
in the middle of the proof.

We explored a calculus that includes a OliftingO rule that allows us to mpweran up and down
in an evaluation context. This rule makes it di%cult to establish conluence of the calculus, however,
as the would-be lifting rule and thémerge] rule interact with each other in complex ways. In
particular, our evaluation contexts do not have unique decomposition, duean Accordingly, a
use of the lifting rule from one side of par expression can block a use of tlimerge] rule from
the other side. We conjecture that a lifting rule would be con!uent, but have not proven it. If we
did have such a rule, then we believe we would be able to prove thedsefwithout the need for
an enclosing empty expression and even be able to relax one of the assumptions of the&rgm
assuming only thaty is complete.
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Our calculus also cannot reason e$ectively with expressions that span multiple instants. For
example, the expressiofseq (loop pause q) is equivalent to(loop pause), but our calculus
cannot prove it. Similarly, a common pattern is to emit a signal and pause in a loop, and also to
run that loop in parallel with some code that looks at the signal. Our calculus would not be able to
propagate the signalOs presence because gfabse.

Another deep lack in our calculus is the ability to reason about input signals. In order for
our calculus to work with a signal, it must be bound Isignal so knowledge about it can be
manipulated via the rules fop expressions. Input signals, in contrast, might or might not be set by
the environment and our calculus cannot perform the required conditional reasoning.

6 TESTING

As we are developing a new semantics for Esterel and Esterel is a well-established language, a
natural concern is whether our semantics captures Esterel or some other, subtly di$erent language.
In order to mitigate this concern, we tested our semantics against two Esterel implementations:
Esterel v5Berry 2000 and Hiphop.js Berry et al. 201} as well as an executable versionfbtop-
Butucaru et al(200J0s COS semantics. Perhaps unsurprisingly, we also discovered bugs in both of
the implementations during this process (as random testing can be extremely e$ettgy(et al.
201)). The remainder of this section describes the testing process and the bugs discovered.

6.1 Testing for Conformance

In order to test our model against the existing semantics and implementations, we had to build
some software libraries:

a Redex COS model We built a model of the COS semantics in RedEgl{eisen et al. 2009
The semantics is a faithful model of the COS semantics because it is a rule-for-rule translation
of the COS semantics; aside from a few syntactic di$erences (notably more parentheses), it
mirrors Potop-Butucaru et a200JOs model exactly, enabling us to simulate the behavior of
the semantics on any example program.

& Redex calculus model Our calculus is implemented in Redex; the rules shown in all of
the "gures are generated automatically from the Redex source code, and the Redex model
also enables us to explore the reduction of any example program.

a Agda/Redex bridge We builtalibrary that can translate the reduction sequences generated
by Redex into proofs in Agda, ensuring that the speci“c, concrete terms which reduce in
Redex also reduce the same way in Agda. This process accepts a specic term and a reduction
sequence. It produces a proof, which then is submitted to the Agda compiler for veri“cation.

a Redex/Hiphop.js bridge = We built a library that can translate Redex expressions into
Hiphop.js programs and then evaluate them. We also built a translator for a subset of Hiphop.js
programs that can translate them into Redex so they can be checked against the calculus and
the COS model. This translator does not accept all Hiphop.js programs, because Hiphop.js
programs embed JavaScript code and our model cannot evaluate the JavaScript.

a Redex/Esterel v5 bridge We also built a translator that producessterel v5programs
from Redex terms in the COS model and in our calculus.

Using these libraries we can test all four implementations of Esterel (the COS semantics, the
Esterel v5 compiler, Hiphop.js, and our calculus) against each other.

There is one subtle point about testing our calculus. Because it is a calculus, we need an algorithm
that can determine which of the many possible reductions we should take in order to "nd an e$ective
path to acomplete state (if one exists). To do this, we identi"ed a subset of the possible reductions
in a way that acts like an standard reduction, guaranteeing that we "ncoanplete state if the
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program is constructive, and that reduction gets stuck if it is not. This reduction relation is given
in "gure 27 with some supplementary de"nitions given in "gur@§ it is explained briely in
section?7. We use this reduction relation to guide the calculus, verifying that each step in the
standard reduction is also possible in the calculus. There are no proofs about our standard reduction
but we use it only to test our calculus against other implementations, as described in this section.

These libraries give us the ability to, given an Esterel program, determine if it produces the same
signals across multiple instants. But we also need a source of Esterel programs to test. For that
purpose, we used two approaches.

First, we took the Hiphop.js test suite, which consists of 130 Hiphop.js programs. Of those, four
usepre, a construct that is not in Kernel Esterel, and were excluded from our tests. An additional
84 use JavaScript in some non-trivial way, and therefore could also not be run in our model. Our
calculus produces the same results on the remaining 42 program as Hiphop.js.

The translation of the Hiphop.js tests into our model produces programs that have a large number
of signals, which causes problems for the process that "nds reductions in the calculus. In short, the
problem is that the exponential behavior i@ar triggers signi“cant performance problems in the
calculus, enough so that running these tests appears not to be feasible. To mitigate this issue these
tests are run only against the standard reduction, which updates signal values in bulk in a single
step, and does not preform the exponential analysis on the top most environment, greatly reducing
evaluation time.

Second, we used RedexOs capability to generate random Esterel expressions and run them in all
of the implementations to see if they agree. We have discovered (and "xed) errors in our calculus
using this method, and we currently have no known bugs. We have run over 1,800,000 random
tests and they still do periodically "nd counterexamples, but they "nd only known bugs in the
implementations.

This random testing process proved invaluable in debugging the calculus, catching several
errors that cannot be found via the proofs in Agda. For example, late in the development process,
the random tester found that an old version of thiehared] rule was incorrect. The old version
initialized the shared variables status t@w, but the COS speci“es that the initial status @éd .

This bug does not invalidate any of the theorems in Agda, but it does violate the property that our
calculus and the other implementations agree. That is, the properties we can e$ectively check via
random testing are stronger than those we can check via proof (in practice).

6.2 Bugs Discovered

During the process of validating our calculus, we disc
ered four bugs in Hiphop.js and one bug in tiesterel v5
compiler. All of the bugs have been con"rmed by the au- .
thors of the systems. All but one of the Hiphop.js bugs nothing )
have been "xed. (+=s-outer &)

The bug inEsterel vs exhibited by a translation of the Fig- 24 A Bug Found in the Esterel v5
program in "gure 24, wheree, evaluates ta, e, evaluates COMPiler
to 1, ande,y. refers tos-outer .

This program is non-constructive and it gets stuck in our both our calculus and the COS semantics;
it cannot reduce the inneshared because the initialization of the signal depends efouter,
but s-outer cannot be read because there is a write pending. Hséerel vscompiler runs the
program, incorrectly setting-inner to 0.

This program also demonstrates one of the bugs we found in Hiphop.js. Of the other three bugs,
one of them was an internal error, crashing Hiphop.js on the progréirap (suspend(exit 0)SJ).

V-
(shared s-outer =g,
(seq (shared s-inner =eyyer
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set-absent : (SetofS) set-ready : (Setofs)

set-absent(, )= set-ready( , )=

set-absent( {S absent}, \{S}) set-ready( {s n,ready }, \{s}
whereS wheres , (8) = n,shared-status
set-absent(, )= set-ready( , )=

:done done done

nothing  done = done

done nothing = done

(exit n) (exit ny) = (exit max(n, n))
(exit n) paused = (exit n)

paused (exit n) = xit n)

Fig. 26 Standard Reduction Auxiliary Metafunctions

The next bug was triggered by the expressi(uspendnothing S1), and produced an error in

terms of the unde"ned value from Hiphop.jsOs host language, JavaScript.
The "nal bug is exhibited by the program— .

in "gure 25 Both in our calculus and in the (S|gnal 5'0‘4“”

COS semantics, th€ar function can deter (signal S-inner

mine that S-inner cannot be emitted, and (seq . .

that therefore S-outer cannot be emitted. (present S-_outer hothing nothing )

Therefore the program is constructive, both (present S-m_r:esr’ t

signals areabsent, and the program reduces gleoTr:ing-)o);l)er)

to nothing . However this program appeared_. L .

to be non-constructive to Hiphop.js. Fig. 25 A Bug Found in Hiphop.js

7 STANDARD REDUCTION

Our standard reduction exists only in Redex (not in Agda, unlike the rest of the semantics). We use
it to help with our testing process, as described in sectibn

Figure27shows the reduction rules. There are four di$erences between the rules of the calculus
and the rules of the standard reduction. First, expressions reduce only if they have an outer
Second, thgabsencd and[readyness] rules set as many signals or variables as they can in a
single step. Third, thgabsencg and[readyness] rules useCan in the calculus andCar in the
standard reduction. In the standard reduction, the extra analysis tbah performs is not necessary.
Finally, the rules are oriented so that at most one applies at each step. There are two pieces to this
orientation: restricting the context in which the rules may apply and restricting tfebsencd and
[readyness] rules so they apply only when no other rule applies.

To understand how the rules are oriented, consider flabsencd and[readyness] rules. They
require the body to be either done or blocked, where blocked is given in "geiielt captures when
an expression cannot reduce because it needs the value of a signal or shared variable that is not
known or ready.

The context restriction is captured by the E detjudgment. The judgment is designed to
restrict the choice of sub-expression par terms so only one side is considered for reduction.
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(0 -E[(signal Sp)]) — (o .E[(o {S+> unknown }.p)]) where ~ E det [signal]

(0 -E[(emit9]) — (0 ( «— {S+> present }).E[nothing]) [emit]
where + Edet, (S € {present ,unknown}
é (e .p) — (o set-absent(,S).p) [absencd
% where ( - p blocked om € done),

S ={sedom( )| (S =unknown}\Can[p, ].S.S+@
(0 -El(present Spq)]) — (o -E[p]) where I Edet, (S =present [is-present]
(¢ -El(present Spq)]) — (0 -E[q]) where I Edet, (S =absent [is-absent]

(0 -E[(shareds=ep)]) — (0 -E[(oc{s+— <n,o0ld)}.p)]) [shared]
where + E det, FV€) c dom( ),V s€ FVE). (S) =(_,ready), n=!"#$[e, ]

o @ -El(+=s8)]) — (@( «—{s—n+!"#3e, ],new }).E[nothing]) [set-new]
% where + Edet, (s) =<n,new), FVE)cdom(),vse FVE). (s)=<_,ready)
'% @ .El(+=s€)]) — (o ( « {s+— {"#He, ].new)}).E[nothing]) [set-old]
_; where + Edet, (S)=¢_,old), FVE)cdom(),vseFVE). (s)=( ,ready)
% (e .p) — (o set-ready( ,S.).p) [readyness]
5 where ( - p blocked om € done),
{sedom( )| (S =unknown }\Can[p, ].S =92,
S,={sedom( )| °(s) =<ev,shared-status) }, shared-status € {new , old},
- S.,=8;\Can[p, ].sh,S,+®
= (@ -El(varx=ep)]) — (@ -Elle{x —"#$[e, ]1}.p)) [var]
% where  E det, FV€) c dom( ),V s€ FVE). (s) =¢_,ready)
> (@ -E[(=xe))]) — (o( «—{x—""#He, ]).E[nothing)]) [set-var]
-g where + E det,x € dom( ), FV€) c dom( ),v s€ FVE). (s) =(_,ready)
‘18’_ (e -El(ifxpQq)]) — (¢ -E[p]) where +Edet,xedom(), (x)#0 [if-true ]
B -E[(ifxpg)]) — (0 -E[q]) where +—Edet, (x)=0 [if-false ]
@ ~Elle »p)) — (. ) E[p]) where , Edet [merge]
= (0 -El(seqnothingq)]) — (0 -E[q]) where + E det [seq-done]
? (0 .E[(seq (exit n)q)]) — (o .E[(exit n)]) where + E det [seqg-exit]
§ (0 .E[(trap stopped)]) — (o .E[|" stopped]) where K E det [trap]
= (0 .E[(par stopped done)]) — (o .E[stopped | done]) where I E det [parr]
e (0 . E[(par pausedstopped)]) — (o .E[paused | stopped]) where I E det[parl]
(0 -El(suspend stopped S)]) — (¢ . E[stopped]) where - E det [suspend]
(@ -El(loopp)]) — (¢ -E[(Toop p p)]) where I~ E det [loop]
(0 -E[(1oop (exit n)g)]) — (0 -E[(exit n)]) where - E det [loop”stop-exit ]

Fig. 27 Standard Reduction Rules
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e blocked e blocked p blocked
(var x :=ep) blocked (:=x €) blocked
(S =unknown p blocked p blocked
(present Sp q) blocked (suspendp S) blocked (trap p) blocked
p blocked g blocked p blocked g blocked
(par p q) blocked (par p done) blocked (par done q) blocked
p blocked p blocked
(seqp q) blocked (loop p q) blocked
e blocked e blocked
(shared s :=e p) blocked (+=se) blocked
s FVE) ()= n,old s FVE) (s)= n,new e blocked
e blocked e blocked
E det E det E det
(seqE q) det (loop E Q) det [ det
E det E det
(suspendE S) det (trap E) det
E det E det E det p blocked
(par E q) det (par done E) det (par p E) det

Fig. 28 Standard Reduction Auxiliary Judgments

There are thregar rules: one that always allows reductions in the left-hand side, and two others
that allow reduction on the right, but only when the left is either done or blocked.

Otherwise, the reduction rules in the standard reduction parallel those in calculus. Of course, we
do not take the compatible closure; instead we just reduce in evaluation contexts.

There is one subtle point of this standard reduction: it is not the standard reduction relation
for our calculus, but rather the one for a slightly smaller calculus. In particular, it does not bypass
constructiveness, unlike the calculus (as discussed in seeliol reaches a stuck state instead.
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8 RELATED WORK

Three decades of work on Esterel have resulted in a diversity of semantic models. A fundamental
di$erence of our semantics is that ours is a calculus rather than merely a reduction systemNit
has an equational theory. In general, the nature of our semantics makes it better for discussing
transformations to Esterel programs and, more speci“cally, it lets us prove equivalences in arbitrary
contexts, like those discussed in sectibrBy the same token, our semantics is not particularly
well-suited to implementing Esterel.

Prior semantics of Esterel can be broadly categorized as follows:

& Macrostep operational semantics compute the result of an instant in big-step style, where
evaluation relates the state of a program at the beginning of an instant to the state at the end.

& Microstep operational semantics compute the result of an instant as a series of small-step
style transitions until the instant is considered terminated. Our semantics is in this style.

a Circuit semantics gives meaning to Esterel programs by translation to Boolean circuits.

Semantics of Esterel are also classi"ed as logical or constructive. Logical semantics are simpler, but
give meaning to programs that are logically correct but non-constructive. Constructive semantics
use constructive information propagation to enforce botgfry 2002.

Finally, semantics of Esterel are distinguished by how much of the language they cover. Some
cover all of Kernel Esterel, while others cover only Pure Esterel, which omits shared and sequential
variables.

Berry and Gonthie(1992 give two operational semantics of Esterel, a macrostep logical semantics
called the behavioral semantics and a microstep logical semantics called the execution semantics.
They have proved these equivalent and, for the latter, proved a con!uence theorem.

Berry (2003 gives an update to the logical behavioral (macrostep) semantics to make it construc-
tive. The logical behavioral semantics requires existence and uniqueness of a behavior, without
explaining how it could be computed, while the constructive behavioral semantics introd@@as
to do it in an e$ective but restricted waBerry (2003 also gives the state behavioral semantics,
another macrostep semantics.

The constructive operational semantics (COS) "rst appearBatop-Butucary(20030s thesis.

It is a microstep semantics that uses program decorations track control low and avoid rewriting
the program. The COS model, like the constructive behavioral semantics, avoids giving meaning
to non-constructive programs, but unlike the behavioral semantics, it provides a guide toward
e%cient implementation.

Like some of those semantics, our semantics handles the larger language (Kernel Esterel) and
accounts for constructiveness. Unlike all of those semantics, our semantics works by term rewriting,
substituting equals for equals and simplifying programs, which makes it a good basis for proving
program fragment equivalences.

Circuit semantics, such at those that appearBerry (2002 and Potop-Butucaru et af2007,
are the semantics generally used by Esterel implementations like Hiphop.jEstetrel v5 These
implementations use circuits as an intermediate representation during compilation.

These semantics can be used for program optimization (as ours can too), but in a dierent way
than ours. Because the translation to circuits is complex, it is di%cult to connect transformations
done at the circuit level back to the source level, so these semantics would not form a good basis
for, say, refactoring tools, or other more human-centered tasks. Another contrast is that these
semantics are much better suited to whole-program optimizations (e.g., using existing CAD tools
to simplify the circuit) whereas our semantics is better suited to local transformations.

Additional semantics includ&@ardieu(200J0s, who uses a di$erent technique than constructive-
ness to eliminate logically incorrect programs. It handles only Pure Esterel.
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Our semantics of Esterel closely follows the worketlleisen and Hielfl 992 on semantics for
programs with state. In particular, we borrow the idea of internalizing state into terms using a
term that binds a partial store embedded at any level in a term. However, unlike Felleisen and Hieb,
because of Esterel@s construct, we do not have unique decomposition into an evaluation context
and redex. This means that tHenerge] rule can merge from both sides ofggar into the same
position, which complicates our proofs. Our semantics also has to handle many Esterel-speci“c
notions, which are not a concern ifelleisen and Hiel19930s work.
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